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Emission control in broad periodic waveguides and critical coupling

Henri Benisty *, Omer Khayam, Cyril Cambournac

Laboratoire Charles Fabry de l’Institut d’Optique, CNRS, Univ. Paris-Sud, Campus Polytechnique, RD 128, 91127 Palaiseau Cedex,
France

Broad periodic channel waveguides, with a corrugation on their edge, exhibit a remarkable structure in their dispersion diagram, in
the form of stripes of minigaps, whose hyperbolic shape is demonstrated. Around the Brillouin zone edge, the contra-directional
feedback borrows the geometry of Littrow diffraction. Spontaneous emission from a large subset of modes then acquires a strong
modulation. Lasing on these modes, the so-called ‘‘Littrow lasing’’, offers also the lowest lasing threshold of the open resonator
system. Reviewing our recent studies of this system, we discuss slow light and critical coupling phenomena: for a properly
adjusted contra-directional coupling, the bands become substantially flat in a sizable area of the dispersion diagram, opening
various perspectives. The band engineering tools to master these phenomena and the physical implications in other domains are
briefly reviewed.
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1. Introduction

Confinement of light amounts to design shapes for

given materials, based on the properties of the resulting

electromagnetic field solutions. Waveguides represent

a wide part of the proposed designs. Based on the

justified belief that the strongest confinement is

associated with the single-mode regime in a wave-

guide, it might be thought that studying a multimode

waveguide is of little use, insofar as the naively

expected trend is some sort of averaging among all

modes. As we shall see, this is not the case, or not with a

1/N scaling (forNmodes). To this end, in this paper, we

summarize numerous aspects of a periodic multimode

waveguide where a rich structure emerges, based on

several previous investigations [1–5]. The main results

are the formation rules for ‘‘minigap stripe’’, and the

strong collective slow-down that can be engineered for

a substantial fraction of the photonic dispersion

diagram of the waveguide modes.

We focus on a quasi-one-dimensional confinement,

with one propagating dimension (z), a second dimen-

sion (x) which defines a ‘‘broad’’ waveguide, and a

strongly confined ‘‘frozen’’ dimension (y), not con-

sidered further. By ‘‘broad’’ we mean here that there is a

bulk region in the waveguide, where the majority of the

intensity profile is confined, with only a modest fraction

in the cladding regions, typically at the wavelength

scale. A multimode behavior with several similar

dispersion branches v(kz) holds for a perfectly z-

invariant guide. Here, we study a z-periodic waveguide

in this regime: we typically consider photonic crystal

(PhC) waveguides where a two-dimensional PhC serves

as a cladding, Fig. 1(a), or simply waveguides with edge

corrugation, Fig. 1(b). For a PhC waveguide, and for
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branches at frequencies within the PhC bandgap,

forbidden propagation in the cladding ensures that

the modal intensity is mostly concentrated in the bulk

part. The PhC waveguide terminology — ‘‘Wn’’ for a

waveguide made by omitting n missing dense rows in a

lattice, will be used [6–8]. We refer to air hole type

PhCs, where the triangular lattice provides the best

confinement in TE polarization.

In this framework, we may define waveguide modes

of an equivalent nonperiodic structure. They then serve

as the basis for a Coupled Mode Theory (CMT)

approach [9].We describe the result of this strategy and

the formation of minigap stripes in the next part

(Section 2). A resultingmodulation of density-of-states

within a fraction of the Brillouin zone is then

evidenced. In Section 3, we describe how our

waveguides form ‘‘Littrow resonators’’ that offer a

privileged avenue for broad-area low-threshold laser

systems. In Section 4, the emergence of collective slow

light around a particular value of the CMT coupling

parameter k is briefly reviewed, introducing the

concept of ‘‘critical coupling’’. Its applications either

to PhC or to simple edge-corrugated dielectric

waveguides are discussed.

2. Broad periodic waveguide modal structure:

‘‘stripes of minigap’’

Consider a basic dielectric waveguide made of

refractive index n and of width W and axis z. Guided

branches of its dispersion diagram v(k) lie between

the lines kc/ncald> v(k) > kc/n, with k � kz, and ncald
a cladding refractive index. For a perfect metal

cladding, the simple relations vm = (c/n)[k2 +

(mp/W)2]1/2 holds for the angular frequency of the

m-th branch, the field, approximated as scalar, being

E�
mðx; zÞ ¼ expð� jkzÞ sinðmpx=WÞ.
In the spirit of CMT, a counter-propagating coupling

scheme between Eþ
mðx; zÞ and E�

mðx; zÞ branches can be

introduced to take into account the effect of periodicity

[1,4]. It essentially reads:

@F�
m

@z
¼ jd�mF

�
m þ

X

m0¼1;...;N

smm0kmm0F
�
m0 (1)

where F�
m are envelope functions for the field ampli-

tudes solutions, thus written as E�
mðx; zÞ ¼ F�

m ðzÞexp
ð� jKzÞsinðmpx=WÞ. In this expression, the wavevector
K = KBZE � p/a is the Brillouin zone edge (BZE) for a

Fig. 1. A broad photonic crystal waveguide (a), and a corrugated waveguide (b); (c) CMT bandstructure calculation based on uncoupled modes and

exact calculation for a W15 PhC waveguide.
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guide of period a, half the Bragg wavevector. Accord-

ingly, the detuning terms d�m incorporate the wavevector

difference. Without any coupling, the expð jd�mzÞ evolu-
tion of F�

m implies that d
�
m � K ¼ �kðvmÞ which

defines the m-th detuning as a function of v and notably

contains its relation with the group velocity of the

uncoupled mode vgm ¼ @vm=@k. Here v
g
m varies, without

coupling, from 0 at k = 0, to (c/n) asymptotically. As for

the coupling terms; smm0 is a convenient term to describe

parity effects, e.g. smm0 ¼ ð1� ð�1Þm�m0Þ=2 to cancel

coupling for odd m–m0. In most of the following, we

shall assume a constant kmm0 ¼ k apart from parity

considerations. The next degree of refinement would

be to use a slowly varying constant, which would reflect

the variations of the diffraction efficiencies of under-

lying plane waves (see Section 3) at the frequencies of

interest.

As for the practical matrix implementation of the

CMT, it implies a 2N � 2Nmatrix, and an indexing rule

of its 2N elements to connect them with the N forward

and N backward modes (canonically either odd

elements are forward, even ones being backward, or

1, . . ., N are forward, N + 1,. . .,2N being backward) [4].

To illustrate this, Fig. 1(c) and (d) compares CMT

and exact dispersion relations (obtained by PlaneWave

Expansion [PWE]) of a W15 PhC waveguide [1]. The

agreement is excellent as regards the coupling scheme,

from the fundamental mode region to the whole region

of excited modes between fundamental modes and

BZE, within the photonic gap. From a mere 2 � 2

perspective, where the forbidden gap just scales like

k11 � k [10], it may seem surprising to get, with the

same constant, both the smaller gaps and the larger ones

at BZE. When several branches are involved, however,

the individual gaps have a ‘‘reentrant’’ non-mono-

tonous behavior vs. k, whereby the gap size first

increases until it reaches the interband separation and

then shrinks again [4]. The intermediate situation is the

basis of the critical coupling reviewed in Section 4. The

‘‘flocking’’ of multiple bands coupled to other modes

can also be grasped from a ‘‘dark mode’’ perspective

[11].

The curly ‘‘necklace’’ branches that emerge around

the BZE are characterized by a hyperbolic shape and by

the period of their necklace curves (their curls or lobes).

Their origin lies in the shape of the ‘‘stripe of minigaps’’

[1,3] that arise between the regular net of crossing

branches for higher order modes, as shown in Fig. 2(a).

Solving for the crossing between mode m + p,

vm+p = (c/n)2[k2 + ((m + p)p/W)2]1/2 and a folded mode

m0 = m � p, vm�p = (c/n)[(k � 2K)2 + ((m � p)p/

W)2]1/2, and starting from the point of coordinate

(v = vm, k = K) on, tracking the locus of the successive

p = 1, 2, . . . minigaps results in the following ‘‘stripe

dispersion’’ relationships:

K � k ¼ mp
p
2

W2

� �

1

K

� �

(2)

Fig. 2. (a) Crossing of uncoupled modes define minigap stripes; (b) scheme of the structure of collective ‘‘necklace’’ slow modes and locally

monomode regions; (c) tilted waveguide arrangement to measure the slow modes; (d) luminescence from a W21 waveguide revealing its highly

modulated DOS structure for the collected k-range, compared to the exact (2D) DOS model.
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vmþ p ¼
c

n
K2 þ m2

p
2

W2

� �

1þ p2p2

ðWKÞ2

 !" #1=2

¼ vmðKÞ 1þ p2p2

ðWKÞ2

!1=2

(3)

By substituting for p from Eq. (2) in Eq. (3), the

dispersion becomes explicit v(K � k)=vm(K)[1 + {(K �
k)W/mp}2]1/2. These are the hyperbola describing the

stripes (red dots of Fig. 2(a)) and thus the trends of the

coupled bands that are constrained between stripes. Their

curvature is exactly the same as the initial Fabry–Perot

hyperbola vm(k) = vm(0)[1 + {kW/mp}2]1/2 centered at

k = 0. Note that the coupled branch number is unchanged

when following the stripe, butp increments at each lobeof

the necklace, a fact hidden in the above formofv(K � k),

and for which extra indexing efforts are indeed

unnecessary. However, there is no parity consideration

above, hence factors of two actually relate several

quantities between Figs. 1(c) and (d) and 2(a) such as free

spectral range.

We give some more scaling rules for these stripes,

based on the schemes of Fig. 2(a) and (b): firstly, the

local spacing (‘‘free spectral range’’) of bands/stripes at

K is:

FSRK ¼ c

n

� �

p

W

� � mp

m2p2 þ K2W2

¼ FSR0

mp

ðm2p2 þ K2W2Þ1=2
(4)

where FSR0 is the usual Fabry–Perot free range (see

[12] for Fabry–Perot type modes in PhC). The reduction

ratio (FSRK/FSR0 < 1) is also the ratio of band edge to

zone center frequencies, vm(k = K) and vm(k = 0).

With reference to the various illustrations of Fig. 2(a)

and (b), the size of k-space where a given hyperbolic

branch lies below the next branch is [K � ksingle,

K + ksingle]. It is a useful measurement of the effective

single-mode domain created by the stripes. Specifically,

this k-space range may be derived as follows:

K � ksingle
�

�

�

�

a

p
¼ a

W

� � 2m

p

� �1=2
pm

ðp2m2 þ K2W2Þ1=2

" #

(5)

where we formally use the waveguide period a to retain

a dimensionless formulation. Hence, the size of this

region compared to the Brillouin zone is not as small as

the naı̈ve fraction 1/N � a/W (a small number in a broad

waveguide), since it is reinforced by a ‘‘mesoscopic’’

factor (2m/p)1/2. The last factor in square brackets is

again FSRK/FSR0, and is typically 0.6–0.8 in our con-

text. A typical value of m is on the orderW/a to operate

around the first Bragg order of contradirectional cou-

pling. Hence, the quasi-single mode region is fairly

larger than the naı̈ve prediction 1/N � a/W: it can

occupy �30% of the Brillouin zone while operating

at ordersm = 20 or so, roughly as occurs in Fig. 1(c) and

(d). We can also count the number of lobes of the

necklace (or minigaps) within the range [K � ksingle,

K], based on Eq. (2), since the integer p, which initially

counts anticrossings, obviously also counts lobes of the

nearby bands. The result reads:

psingle ¼
W

a

� �

mp

2

� ��1=2 pm

ðp2m2 þ K2W2Þ1=2

" #

(6)

This value is nearly the square root of the total number

of lobes in the Brillouin zone (naturally of order W/a)

sincem is on the order ofW/a. In otherwords, this is a
ffiffiffiffi

N
p

scaling. This trend also explains why it is difficult to

define a strict boundary for thevalidity of this description.

For narrow waveguides, the number of lobes gently

decreases to unity, so that reminiscence of the W15

bandstructure of Fig. 1(c) and (d) can be found in, say,

much narrower W2 waveguides, but with psingle � 1.

The observation of these stripes of minigaps was

reported in [3]. The highly structured band diagram

translates into a density-of-states (DOS) with ‘‘on-off’’

modulation if the proper k-range is collected Fig. 2(c).

We provide in Fig. 2(d) and (e) a typical example of a

DOS modulation for TE polarization seen through the

photoluminescence of a quantum well (centered around

l = 1.5 mm) in an InP based W21 PhC waveguide. A

guide with its axis tilted by 608 to the cleaved edge

(Fig. 2c) ensured the sampling of k-space modes in

�30% of the Brillouin zone. This example displays a

complex spectrum that was very well reproduced by

using a PWE-based density-of-states calculation. In

other cases, a more ‘‘on/off’’ modulation was seen up to

W31. This indicates the possible advantageous use of

this phenomenon to better exploit the spontaneous

emission inside an open resonator, for instance to

extract a given spectral range into selected modes.

3. Littrow lasing and low laser threshold

From the well-known picture of lasing at photonic

band edges, we infer that minigap edges may equally

privilege stimulated emission [13,14], provided their

spectral position falls in the gain region of the guide’s

active material. They offer several local zero-group

velocity points, but the BZE point is the most likely to

4



lase. At this BZE point, kjj = p/a, a mode Eþ
mðx; zÞ is

reflected into its counterpart E�
mðx; zÞ. The textbook

operation of distributed Feedback (DFB) lasers can be

revisited with the scheme of Fig. 4(a) picturing some of

the underlying plane waves of E�
m . Note that the main

interaction of Fig. 4a involves wavevectors with two

opposite kjj -components, because kjj � 2p/a = �kjj (but
at variance with DFB lasers, it is not the main

component, see [15,16] for some more generality).

This is just ‘‘Littrow diffraction’’ in optics, an oblique

incidence beam diffracted back on its incident path,

Fig. 3(a). Backward coupling is thus closely related to

diffraction efficiency in (�1) order, which is mapped in

Fig. 3(b) for a typical triangular PhC [5], with cut-off

curves and Littrow curve. In Fig. 3(c) the diffraction

efficiency near mid-gap is plotted.

The free spectral range of stripes, FSRK for a

symmetric guide, separates the pair of branches of the

‘‘necklaces’’ (absorbing the two modes E�
m ). The zone-

edge FSR is halved only for a nonsymmetric case [1].

Even for a symmetric case, the two branches of a

‘‘necklace’’ are not identical, therefore the lasing FSR

can differ from the vm(K) pattern.

A ‘‘Littrow laser’’ realization was discussed in [5]

and relies on distributed Littrow-type back reflection in

an open-resonator geometry, shown in Fig. 4(a). We

display in Fig. 4(b) and (c) the variation of the spectral

pattern for a larger series of injected current values.

Above the background related to the k = 0 Fabry–Perot

mode (collection is on the side of the laser, along the red

arrow ‘‘FSR0’’ of the inset), a clear two-moded pattern

emerges either at low current or at high current,

although it is spoiled in between due to limited gain

spectral width (at 150 mA and 200 mA).

As for the reason for a lower lasing threshold for

Littrow modes, a sensible comparison can be made with

Fig. 3. (a) Littrow diffraction onto a PhC cladding; (b) color map of diffraction efficiency in�1 reflected order, with cut-off curve and Littrow curve

for a typical PhC; (c) plot of efficiency for the normalized frequency u = a/l = 0.25. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of the article.)

Fig. 4. (a) Distributed feedback revisited for ‘‘Littrow lasing’’. The

white and hatched fraction of arrows suggest the role of feedback and

feed forward waves; (b) and (c) spectra recorded at increasing currents

for the laser of Ref. [5], with the two kinds of FSR as signaled, see also

the top inset. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of the article.)
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Fabry–Perot modes: consider an invariant non-periodic

waveguide. Transverse oscillation of Fabry–Perot

modes evokes the usual condition R1R2 exp(gW) = 1

(W � L in usual notations) with R1 and R2 the

reflectivities and g the spatial gain. For Littrow modes,

the round-trip path is longer, 2W/cos u instead of 2W. For

a given reflectivity, this lowers the threshold gain by just

the cos u factor, which can range from 0.6 to 0.9. Such a

lower gain results in much less power consumption and

much less heat sink issues for a broad area laser or a gain-

clamped semiconductor optical amplifier (GCSOA [17],

a useful variant of SOA).

The obtainment of single-transverse-mode Littrow

lasing is important in applications, thus the multimode

lasing situation of Fig. 4b is detrimental. The option of

Fig. 5(a) is a simple solution in the case of PhC

waveguides, inspired by the coupled-cavity generic

problem. A narrow guide ‘‘W2’’ is carved on the side of

the main guide. Being narrow, it offers few eigenmodes

for coupling from the large cavity to it. At each such

eigenmodes, a dip appears in the effective reflectivity as

seen from the large guide, see Fig. 5(b), because losses

(scattering) occurs mostly on boundaries, which are

much more visited: the W2 guide serves as a resonant

‘‘photon dumper’’. Two close dips are easily obtained in

W2which displays a ‘‘necklace’’ pattern of two branches

with the good order of separation (FSRK of the broad

guide) and a modest dispersion at BZE. Alignment of

Littrow modes, material gain, and the recovery window

of our proposed added waveguide should result in robust

monomode operation in these broad waveguides.

4. Critical coupling in broad periodic

waveguides

Looking at the pair of branches of a ‘‘necklace’’, the

group velocity in transmission windows ranges from

zero to an upper bound vmax
g ¼ c=nmin

g , nmin
g being the

lower bound of group index. It is dictated by the width

of the miniband and the k-periodicity of the antic-

rossings. Shrinking this spectral width reduces vmax
g . To

understand what are the parametric changes to reach

such a ‘‘compression’’ of photonic bands, let us

recourse to CMT, whereby one may conveniently vary

this compression through the coupling strength k. It is

simple to tackle in a CMT toy model [4] the evolution of

‘‘spectral width’’ of necklace-type bands for fixed FSRK

but variable k. At low k, all anticrossings first grow, and

the necklace spectral width decreases. But this occurs

only until a point where nearby branches, above or

below the gap of interest, constrain these growths. At

this point, gaps are maximal and the ‘‘spectral width’’ is

thus minimal. We call this situation the ‘‘critical

coupling’’ because for stronger coupling strength k, the

stripe of minigaps again shrinks while the spectral width

grows again. We obtained a simple result (numerically,

but it certainly has a mathematical demonstration), by

noting that for any number of equidistant branches, the

critical coupling situation is realized when

k � kc = FSRK/p (remember that in the 2 � 2 case, a

gap of width 2k is generated, hence the collective aspect

of equidistant branches brings a factor 2/p on the

relation between gap and coupling).

Fig. 6 illustrates the relation dispersion near the

‘‘critical coupling’’ regime for an ideal system (thanks

to the CMT description). We showed [4] that the critical

coupling condition is attainable in real systems notably

thanks to high-aspect ratio V-groove-type type struc-

tures (V-corrugations).

Of course, the large hyperbolic dependence centered

on the BZE is unavoidable in our spirit and clearly

limits the degree of attainable slow light phenomena. A

k-range well inside [K � ksingle, K + ksingle] is needed to

reach the lowest group velocities.

Fig. 5. (a) Broadwaveguide coupled to aW2waveguide through a few rows; (b) loss/gain/reflectivity spectral arrangement to obtain singlemode lasing.

6



Furthermore, we showed in [1] that a special interest

of this understanding of the existence of a critical

coupling is the potential to predict ‘‘optimally slow’’

light in a structure, in a typical case where among a

number of optogeometric parameters, only one or two

can be practically tuned, as sketched in Fig. 7: because

the feedback coefficient of ‘‘Littrow modes’’ k has a

close link to an overlap integral between E�
m profiles and

the periodicity, we may improve the ‘‘slowness’’

of a given structure by applying any recipe that adjusts

the overlap so as to obtain critical coupling. The

perturbation is, physically, the first Fourier component

of the dielectric profile taken along a line x,

ê�1ðxÞ�
R

eðx; zÞ expðiG�1zÞ dz. Once a sufficiently

monotonous relation exists between the coupling

strength k and the parameter controlling e(x, z), e.g.

the depth of a corrugation, the size or position of a hole,

or its refractive index, then, reaching an optimally slow

waveguide design amounts to tune this specific

parameter until k attains the critical value (Fig. 7).

A few examples were chosen to illustrate this

approach in [1] for the case of photonic crystal

waveguides in the so-called TE polarization.

Another aspect of critical coupling was seen recently

when shaping a section of a corrugated waveguide as an

open resonator [2]. The resonator design reaches a

maximum quality factor Q at the critical coupling

regime as well, as could be expected: a nearly

dispersionless situation is reached when modes are

best localized, as happens in the CROW (Coupled

Resonator Optical Waveguide) context [18,19] for very

weakly coupled resonators.

We also attempted to draw two connections of this

critical coupling regime to neighbor scientific domains,

namely graphene nanoribbons [20] and ‘‘dark

states’’[11].

In the case of graphene nanoribbons, the dispersion

relation of electrons in graphene is linear around the

pseudogap. Therefore, a graphene nanoribbon (GNR)

resembles a broad optical waveguide [20]. Edge states

that are present e.g. in zig–zag GNR may also have a

counterpart in optics, as illustrated recently [21] around

the concept of one-way waveguides [22], but this is not

our main point. Our analogy indicates the possible slow

down of electrons by a proper edge corrugation [20] and

thus the formation of an open electron resonator, similar

to the optical one in [2]. One might ask why is there any

interest in slowing down the pleasantly ‘‘fast’’ electrons

of graphene or ‘‘spoil’’ their mobility. The answer is

much as in optics: when you have a low loss system, you

try to build the best Fabry–Perot or micro-ring from it to

further exploit its coherent nature and its particular high

or low sensitivity to various factors. Also, it is hard to

coherently get electrons out of graphene, e.g. across a

tunnel barrier through a foreign material, without being

at high risks at the interface due to its possible local

(chemical) modifications, defect tunneling, etc. Relying

on reflections seems therefore a better option. It remains

to be seen what progresses can be made through field

effect and electrodes to manipulate electrons in

graphene to elaborate on this strategy, of course.

As for the connection with ‘‘dark states’’, it emerged

[11] because the simplest CMT modeling initially

performed on ‘‘critical coupling’’, involving linear

branches, revealed the appearance of two ‘‘bright’’

states and 2N � 2 ‘‘dark states’’ when coupling N + N

Fig. 6. Coupled mode theory dispersion diagram similar to Fig. 1(a)

but with coupling constant tuned to the critical coupling range,

attained in the lozenge outlined.

Fig. 7. Graphical outline of the recipe in Ref. [1] to attain critical

coupling by tuning any available optogeometric parameter through the

perturbation integral G.
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states beyond critical coupling. Above the critical

coupling regime, most of the coupled modes are formed

by the hybridization of one of the underlying modes

with its nearest (energy) neighbors in such a way that a

high exchange of amplitude can take place without a

high energy shift of the bands, as appears analytically

when discussing the simpler 1 � N coupling scheme

[11,23].

To conclude this part, we note that Longhi’s results

[24] on optical analogy of quantum phenomena are

also very interesting. They have been mostly

elaborated, however, in the context of directional

rather than contradirectional coupling, which entails

clear differences.

5. Conclusion

Broad waveguides with periodic edges offer more

structured features than might be thought from the N
�1

scaling of DOS features in invariant (non periodic)

waveguides. A N�1/2 scaling emerges for the fraction of

Brillouin Zone still displaying large DOS modulation.

The so-called Littrow modes forming in these systems

have been seen to be promising candidates in broad-area

lasers. Finally, the critical coupling condition has been

illustrated and some more profound physical conse-

quences briefly mentioned, on graphene nanoribbons

and on dark states.
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Cassagne, Optical and confinement properties of two-dimen-

sional photonic crystals, IEEE J. Lightwave Technol. 17 (1999)

2063–2077.

[8] J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals,

Molding the Flow of Light, Princeton University Press, Prince-

ton, NJ, 1995.

[9] S. Olivier, H. Benisty, C. Weisbuch, C.J. Smith, T.F. Krauss, R.
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