N

N

Hybridization of electromagnetic numerical methods
through the G-matrix algorithm
Jean-Paul Hugonin, Mondher Besbes, Philippe Lalanne

» To cite this version:

Jean-Paul Hugonin, Mondher Besbes, Philippe Lalanne. Hybridization of electromagnetic numerical
methods through the G-matrix algorithm. Optics Letters, 2008, 33 (14), pp.1590-1592. hal-00566654

HAL Id: hal-00566654
https://hal-iogs.archives-ouvertes.fr /hal-00566654

Submitted on 5 Apr 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal-iogs.archives-ouvertes.fr/hal-00566654
https://hal.archives-ouvertes.fr

1590

OPTICS LETTERS / Vol. 33, No. 14 / July 15, 2008

Hybridization of electromagnetic numerical
methods through the G-matrix algorithm

J. P. Hugonin,* M. Besbes, and P. Lalanne

Laboratoire Charles Fabry de I'Institut d’Optique, CNRS, Université Paris-Sud, Campus Polytechnique,
RD 128, 91127 Palaiseau Cedex, France
*Corresponding author: jean-paul. hugonin@institutoptique.fr

Received March 12, 2008; revised June 11, 2008; accepted June 13, 2008;
posted June 19, 2008 (Doc. ID 93801); published July 11, 2008

For the sake of numerical performance, we hybridize two common approaches often used in electromagnetic
computations, namely the finite-element method and the aperiodic Fourier modal method. To that end, we
propose an extension of the classical S-matrix formalism to numerical situations, which requires handling
different mathematical representations of the electromagnetic fields. As shown with a three-dimensional ex-
ample, the proposed G-matrix formalism is stable and allows for an enhanced performance in terms of nu-
merical accuracy and efficiency. © 2008 Optical Society of America

OCIS codes: 050.1755, 050.1960, 000.4430.

With the undergoing development of micro- and
nanotechnology, recent advances in microwave and
photonic integrated circuits have increased the ne-
cessity of accurate computer-aided tools for solving
Maxwell’s equations. In this Letter, we are concerned
with the hybridization of two popular frequency-
domain numerical methods in electromagnetism: the
finite-element method (FEM) and the aperiodic Fou-
rier modal method (a-FMM). The former is a well-
established method [1] operating in real space with
space-variant discretizations. The latter is a gener-
alization of the rigorous coupled-wave analysis
(RCWA) [2] for analyzing nonperiodic geometries in
the Fourier domain by using an artificial periodiza-
tion with coordinate transforms [3]. Generally ac-
cepted appraisals of the two methods are different.
The FEM is well appreciated for accurately handling
intricate geometries, including sharp edges or curved
discontinuities, but it is rather memory consuming
for large three-dimensional (3D) meshes. By analyti-
cally handling one direction of space, the a-FMM re-
lies only on a series of two-dimensional (2D) sam-
plings and offers fully rigorous outgoing wave
conditions in this direction, either for z-invariant [3]
or periodic [4] waveguides. Drawbacks of the Fourier
approach are difficulties encountered for analyzing
metallic geometries with fields rapidly varying at
subwavelength scales [5]. To take full advantage of
their main strengths, the two methods can be com-
bined. This can be achieved through a novel G-matrix
formalism, a sort of generalization of the classical
S-matrix formalism [6] to numerical situations mix-
ing totally different mathematical representation of
the electromagnetic fields.

To illustrate our purpose, let us consider Fig. 1. An
aggregate of optical dielectric waveguides is illumi-
nated by the fundamental Bloch mode of a periodic
waveguide. Light is scattered by several inclusions,
and notably by metallic scatterers depicted as verti-
cal rices in the section (z; <z <zs). The whole scatter-
ing geometry can be rather large and may require a
huge memory to be solved with methods relying on a
full 3D discretization of space.
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To overcome this numerical difficulty, the proposed
hybridized approach (HYB) particularizes a specific
space direction (the z axis hereafter) for the integra-
tion of the differential systems of Maxwell’s equa-
tions. The latter can be written as a single differen-
tial equation:

d
5[‘1’] =D[W¥], 1)

with [W] a n X 1 vector associated to the mathemati-
cal representation of the transverse electromagnetic
field components, E, E, H, H,, in a local basis, and D
a differential operator that depends only on the x, y,
and z coordinates. The transverse fields can be ex-
pended into various basis: a Floquet Fourier-space
basis with the RCWA [2], a local-mode basis with
Fourier modal methods [3-5], a series of functions
operating over a finite number of small subdomains
with the FEM, etc.The choice of the basis depends on
the local geometry. Solving the linear Maxwell’s
equations amounts to calculate the vectors [W(z)]

Fig. 1. (Color online) Sketch of a typical geometry consid-
ered for illustrating the relevancy of combining the FEM
and the a-FMM. For z; <z <z;, 1, the geometry encompasses
metallic inclusions shown as vertical rices. The cross-
section planes labeled z=z; i=1...N represent cross-section
planes related to G-matrix operations. At z=z; and z=zy,
modal field representations are used to satisfy the outgoing
wave conditions in z-periodic and z-invariant waveguides,
respectively. For computational purpose, complex coordi-
nate transforms, in the transverse x and y directions, map
infinite space to finite space.
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whose dimension may vary along the z axis accord-
ingly to the selected basis.

Two kinds of linear relations are obtained for
[W(z)]. First, the integration of Eq. (1) from plane z
=z; to plane z=z;,; leads to a linear relation between
[W(z;)] and [W(z;,1)]. This relation is analytically de-
termined in the Fourier modal basis if € and u are
piecewise constant [2,3]. With the FEM, this relation
is obtained by eliminating the inner finite-element
(FE) nodes (in 2D) or edges (in 3D) from a large
sparse matrix to retain only the FE degrees of free-
dom located on the z; and z;,; planes [7]. The second
kind of relation is classically obtained by matching
the tangential field components at a single plane
z=z;. It represents a basis transform that allows re-
lating different mathematical representations of the
same transverse electromagnetic field components in
the modal, Fourier, or FE basis. The basis transform
that allows matching different representations is
particularly suitable to rigorously satisfy [4] the out-
going wave conditions at the outer planes z=z; and
z=zp. It is numerically performed in our numerical
implementation by the method of moments; see, for
instance, the earlier works [8,9] in the present con-
text of mixing Fourier and real-space discretization
expansions. Without loss of generality, the two types
of linear relations may be written in a compact form:

L[W]=R[¥'], (2)

where [W] and [W'] are n X1 and n’ X 1 generic vec-
tor notations representing the transverse field com-
ponents, either in two different cross-section planes
(z and 2’) or in two different basis at the same cross-
section plane z, or in both different basis and differ-
ent cross-section planes. In Eq. (2), £ and R are two
matrices with an identical number m of lines. Note
that the m Xn £ and m Xn' 98 matrices are rectangu-
lar and cannot be inverted in general.

Referring to Fig. 1, a set of equations similar to Eq.
(2) may be written for every plane z;. Doing so, we
would end up with a huge linear system whose un-
knowns are the [W(z;)]’s. If the problem is well con-
ditioned, the system can be solved by eliminating the
intermediate unknowns, and one may compute the
important unknowns (for example, the diffracted
fields at z=z; and z5) as a function of the incident
fields. Although very stable and efficient algorithms
(such as the Gauss—Jordan elimination algorithm
[10]) may be used for the elimination, this brute-force
approach would necessitate handling huge matrices.
As we will see, the Gauss—Jordan elimination can be
efficiently carried out, step by step.

For that purpose, let us now consider another lin-
ear relationship between [W'] and another n” X 1 vec-
tor [W"]. The two relations relating the three field
representations, [W], [W'], and [W”"], can be written
as

LIW]-R[W¥']=[0], (3a)

L'[W']-R'[¥"]=[0]. (3b)
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For m+m’=n', one can eliminate [W’] from the aug-
mented system of Eqs. (3a) and (3b) to obtain a new
linear relation between [W] and [W”"]:

E”[‘I’] — R//[\I’«//] . (4)

Clearly, for each elimination step, it is necessary to
introduce as many new relations as eliminated un-
knowns, so that the number m” of lines in £” and R”
is equal to m+m’ —n’. Symbolically, if we denote by G
the matrix pair (£, R) involved in the linear rela-
tions, the elimination operation G"=G’-G leading to
Eq. (4) defines an inner operation that we call “prod-
uct” hereafter, in a similar spirit as the S-matrix al-
gorithm defines a “product.” However, let us note
that the S-matrix product involves several matrix
multiplications and inversions, while the G-matrix
product does not rely on any matrix algebra and is
performed fully numerically, thanks to the efficient
Gauss—Jordan elimination algorithm [10]. Thus re-
ferring to Fig. 1, the solution of the scattering prob-
lem can be obtained by using G-matrix products to
repeatedly eliminate the unknowns in the intermedi-
ate planes, 2y, 25...2y_1, and to obtain a G matrix
G=(£,R)=Gy-...Go°G; that relates the amplitude
vectors of the incident I and diffracted D waves in
the modal basis at the outer planes z; and zy:

glp 1=:lp].

It is interesting to consider the particular case
where all the transverse field vectors [W] have the
same lengths (n=n’'). Then the G matrix G=(£,R)

can be simply related to the classical S matrix by
Si; 0 I -Sy

where S;;, S19, So1, and Sys are the four submatrices
[6] of the S matrix that relates modal expansions. Al-
though it does not involve any matrix algebra ma-
nipulations, the G-matrix product becomes equiva-
lent to the classical S-matrix product. Equation (4)
has been previously used for Bloch mode calculations
with the a-FMM [11] and with the FEM [8]. For large
matrices, the CPU time required for performing a
G-matrix product is slightly longer than that of an
S-matrix product, but it is more accurate and more
stable, and since the S-matrix algorithm cannot be
used if the transverse field vector lengths vary, the
G-matrix elimination algorithm can be considered as
a generalization of the classical S-matrix algorithm.
As evidenced in the following numerical results, the
G-matrix elimination algorithm is numerically
stable, and the HYB approach is efficient even for di-
electric structures.

We have tested the HYB performance for various
scattering constructs involving metallic and dielec-
tric materials. Recently, the HYB was convincingly
benchmarked [12] against 11 other methods for a 2D
metallic slit-groove lamellar diffraction problem.
Here, we provide a 3D example and compute the even
gap-guided mode of a photonic-crystal single-row-
missing W1 waveguide in a semiconductor (n=3.5)
membrane in air. The Bloch mode computation is
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performed for a frequency (A=1.55 um) correspond-
ing to a null group velocity at the boundary of the
Brillouin zone [13]. In Fig. 2, we compare the numeri-
cal results obtained with the a-FMM (a) and HYB (b)
methods for the ratio |E4|/|Ep| of the z components of
electric-field modulus at points A and B (right inset)
located in the median plane of the membrane. For
the calculations, the integration of the differential
Maxwell’s equations is performed along the z direc-
tion, which is transverse to the waveguide axis (right
inset). Details of the a-FMM implementation for this
specific geometry can be found in [14]. With the
a-FMM, the continuous profile is actually discretized
with a staircase approximation (left inset), and the
accuracy depends on the number S of slides used to
discretize the nearest hole rows surrounding the line
defect. As shown in Fig. 2(a), a plateau is systemati-
cally obtained as the total number N of Fourier har-
monics increases, but the convergence with S is
rather small even for S=79 slices (<x\/500) [5]. This
drawback is completely removed with the HYB
method [Fig. 2(b)], which uses a nonuniform tetrahe-
dron mesh with first-order elements. Because of the
accurate sampling in real space, convergence is guar-
anteed as the number N’ of nonuniform mesh edges
increases. More specifically, it is found that the HYB

e = 39
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Fig. 2. (Color online) 3D field calculation of the gap-guided

mode of a W1 waveguide in a semiconductor (n=3.5) mem-
brane in air with the (a) a-FMM and (b) HYB methods. The
vertical axis represents the ratio |[E,|/|Ep| of the z-electric-
field modulus at points A and B (right inset) located in the
median plane of the membrane. [E4|/|Eg| is plotted as a
function of the total number N of Fourier harmonics in (a)
for different slicing numbers S of the two inner rows (9
slices being used for the other hole rows). In (b), |[E4|/|Ep| is
plotted as a function of the total number of elements used
to discretize the inner first rows for two values of N (N
=220 and 2050). The results hold for a period a=420 nm, a
membrane thickness =220 nm, and a hole radius r=0.3a.
The wavelength is A=1.55 um.
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predictions for N’ =50,000 and N=220 are more accu-
rate than those of the a-FMM for N as large as 2500.
This corresponds to an impressive lowering of
memory requirements and CPU times for a given ac-
curacy.

Since it relies on classical and direct numerical
procedures, we believe that the present G-matrix for-
malism can be applied to a broad variety of numeri-
cal methods relying on linear differential operators.
For instance, it can be applied to FEM and FMM in-
dividually or to their natural combination for the
sake of performance improvement. Besides, this ap-
proach might be important for coupling multiphysics
problems.
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