
HAL Id: hal-00559005
https://hal-iogs.archives-ouvertes.fr/hal-00559005

Submitted on 23 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantum-nondemolition measurements using ghost
transitions

Klaus M. Gheri, Philippe Grangier, Jean-Philippe Poizat, Daniel F. Walls

To cite this version:
Klaus M. Gheri, Philippe Grangier, Jean-Philippe Poizat, Daniel F. Walls. Quantum-nondemolition
measurements using ghost transitions. Physical Review A : Atomic, molecular, and optical physics
[1990-2015], 1992, 46, pp.4276-4285. �10.1103/PhysRevA.46.4276�. �hal-00559005�

https://hal-iogs.archives-ouvertes.fr/hal-00559005
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW A VOLUME 46, NUMBER 7 1 OCTOBER 1992

Quantum-nondemolition measurements using ghost transitions

Klaus M. Gheri
Physics Department, University ofAuckland, Private Bag 92019, Auckland, New Zealand

Philippe Grangier and Jean-Philippe Poizat
Institut d'Optique, Borte Postale 147, 91403 Orsay, France

Daniel F. Walls*
Joint Institute for Laboratory Astrophysics, University of Colorado, Boulder, Colorado 80309-0440

(Received 10 March 1992)

We present a detailed analysis of the quantum-nondemolition (QND) properties of a measurement
scheme employing coherently driven three-level atoms in the A or cascade configuration inside an opti-
cal cavity. We propose to use a strong signal field to empty one of the transitions and dress the signal-
transition levels. The atoms become transparent for the signal beam, which sees a "ghost transition. "
When a probe is applied and tuned to the vicinity of one of the light-shifted levels, the probe phase is ex-
tremely sensitive to fluctuations of the signal intensity. This enhances the QND coupling and enables
the system to operate at lower cooperativities.

PACS number(s): 42.50.Lc, 42.50.Dv

I. INTRODUCTION

A quantum-nondemolition (QND) measurement may
be implemented in optics via a four-wave-mixing interac-
tion [1—3]. In such systems a measurement of the phase
fluctuations of a probe field enables the amplitude fluc-
tuations to be determined in a manner which evades
back-action noise. Experiments demonstrating this effect
have been performed by Levenson et al. [4] using four-
wave mixing in optical fibers and by Grangier, Roch, and
Roger [5], who coupled two electromagnetic-field modes
via a two-photon cascade transition in a three-level atom.
The QND correlations obtained in these experiments
have been limited by excess noise.

In the experiment of Grangier, Roch, and Roger [5],
the signal and probe beams were significantly detuned
from the intermediate level to avoid absorption and
spontaneous-emission noise. In order to compensate for
the loss of interaction strength, it was necessary to in-
crease the density of atoms. Increasing the density of
atoms, however, increases noise due to collisions. We
seek a way to obtain a large QND gain with smaller
atomic cooperativities. Several theoretical analyses [6—8]
of QND measurements using three-level atoms in the cas-
cade configuration have been made, the most complete
being that of Poizat, Collett, and Walls [8], where the in-
termediate level is included.

In this paper we wish to describe a proposal where one
atomic transition is coherently driven by a strong signal
field and the remaining transition is scanned by a much
weaker probe beam. The atoms may be in the A or cas-
cade configuration. In the latter case, the signal drives
the upper transition [9] [cf. Figs. 1(a) and 1(b)]. The
effect of the strong pumping by the signal is that almost
all the population will be in the ground state of the
probed atomic transition. Thus the signal will be applied
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FIG. 1. (a) A-model atom. (b) Cascade-model atom.

to an essentially empty transition ("ghost transition"),
which greatly reduces signal absorption and
spontaneous-emission noise. Since the atomic medium is
effectively transparent for the signal, degradation is negli-
gible.

The strong signal field will dress the atomic levels be-
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quadrature operators defined further in Eq. (10} and
where

(Xin Yout) 1((XinYout)+( YoutXin) )s p sym 2 s p p S (2)
———————————-lu&
I v&

FIG. 2. Strong signal field 0, dresses the signal transition
and creates the dressed states ~+ ), ~

—). Tuning the probe Qp
to the virtual level

~
v ) corresponds to the two-photon-

resonance case for which, in the case of A atoms, the atoms be-
come transparent to probe and signal beam due to coherent
population trapping.

C2(X ill YUU't )— 1

1+N' (X'"Y'"')
s p

(3)

For a perfect measurement, we have N'q(X, '"Y'"'}=0.
The second criterion characterizes the signal-

nondemolition property of the device. The correlation
coefficient that will quantify this property is given by

We have C (X,'"Y "')C [0,1]. For a perfect measurement,
we have C (X,'"YP"')=1. For coherent inputs the corre-
sponding equivalent input noise is related to this
coefficient by (see Ref. [13]for more details}

(X inXout ) 2

C2(XinXout ) ((X'")')((X'"')') (4)

tween which it is applied. The strength of the correlation
between signal and probe may be increased by tuning the
probe to the vicinity of one of the Rabi-split levels (Fig.
2}, while still being outside the absorption line. Thus the
probe phase will be highly sensitive to any changes in the
signal intensity.

The organization of this paper is as follows. We shall
first give in Sec. II a presentation of the criteria charac-
terizing nonideal QND measurements. We present then
in Sec. III analytical approximated results for the A
configuration, which will allow us to get a first insight
into the QND coupling between the signal and probe
beams. In Sec. IV we discuss these results by comparing
them with numerical solutions of the complete model (see
below). In Sec. V we shall deal with the cascade
configuration and compare it with the A scheme and with
the results of Ref. [8]. We present in the last section (Sec.
VI) the mathematical model used for the numerical com-
putations.

II. QND CRITERIA

The aim of an optical QND measurement is to measure
a quadrature component of a signal beam without per-
turbing it by coupling it to a quadrature of a probe (or
meter) beatn. The effectiveness of such a measurement
can be characterized by three criteria proposed by Hol-
land et al. [12] using correlation coefficients. These cri-
teria have been recently reconsidered by Grangier, Cour-
ty, and Reynaud [13]under the scope of equivalent input
noise, which makes them better suited for an experirnen-
tal characterization via classical transfer measurements.

The first of these criteria is that a measurement of the
signal is actually performed, i.e., that the meter beam has
picked up some information about the signal. This can
be done by considering the normalized correlation be-
tween the input signal and output of the meter beam.
This coefficient is defined the following way:

(Xin Yout) 2

C2(Xin Yout) l P ~tin
P ((Xin)2) ( ( Yout)2)

where X, and Y are, respectively, the signal and probe

The conditional variance can then be written (for a
linearized system) as

V(Xou
~

You )=((Xou ) )[1 C (Xou You )] (6)

This criterion gives in fact the state-preparation ability of
the system. For a perfect state-preparation device
V(X;"'~ YP"')=0, whereas V(X;"'~ YP"')=1 (no quantum
effect) for a beam splitter.

Note that the ordering has to be considered very care-
fully when dealing with frequency spectra of these vari-
ous coefficients (see Refs. [8,13]).

III. A CONFIGURATION-ANALYTICAL RESULTS

In this first part we want to give an account of the in-
teraction of three-level atoms in the A configuration with
two coherent light fields as depicted in Fig. 1(a). We as-
surne the light fields to be detuned from the atomic reso-
nances by an amount of 6, and 62, respectively. The
spontaneous decay rates are denoted by 2I, and 2I 2.
The decay rate for both atomic coherences is then
y=I, +I 2. Furthermore, we assume that the Rabi fre-
quency 0, of beam 1, from now on called the signal
beam, is much stronger than the Rabi frequency Qp of
beam 2, or the probe beam. The immediate consequence
of this assumption is that in a first approximation we may
neglect the effect of the probe beam on the atoms. The
signal beam will dress two of the three atomic states and
give rise to energy shifts of

5E= ——'b, +(—'5 +0 )'~
1—4 1 s

We have C (X,'"X;"')C [0,1]. For a perfectly nondegrad-
ing device, we have C (X,'"Yp"')= l.

The third criterion tells us how well the probe output is
correlated with the signal output. A convenient quantity
for characterizing it is the variance in the signal output,
given a measured value of the probe field (conditional
variance). We first define the correlation coefficient

(XUUt Yout ) 2

C2(Xout Yout} t P
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Note that in our notation positive detunings correspond
to negative energy shifts. Its second effect will be to
transfer all of the population to the third undressed state,
thereby emptying the signal transition. If we label the
signal transition levels ~1) and ~2) and the ground state
of the probe transition ~0), then in a zeroth-order ap-
proximation the solution for the atomic steady-state
coherences will be o.;-=5,p5 p. The inclusion of terms
coming from the probe field yields nonzero atomic coher-
ences for the probe transition ~0)-~2) and the two-
photon transition between levels ~0)-~1). The atomic
coherence o &2 for the signal transition and all other pop-
ulation terms are of second order in the probe Rabi fre-
quency. The first-order atomic coherence cTp2 governs the
atomic response, i.e., the absorptive and refractive behav-
ior of the atoms, to the probe beam. It is found to be

Q Q LULL + y S 2/n /' —~~

where the two-photon detuning 6 is given by 6=b, 2
—b,

and M=D+i b,y, with

/vp/ «I, (9)

=[5., /2 —6 +[0 +(b, /2) )'c~I

&& [b~—6,/2+[0, +(6,/2) ]'c~] .

D is the product of the frequency differences between the
probe input frequency cD~" (level ~u ) in Fig. 2) and the
transition frequencies between level ~0) and the light-
shifted levels ~+ ), ~

—) of the excited state ~2).
In Fig. 3 we plot the spectral absorption coefficient a

and the nonlinear phase shift n versus the atomic probe
detuning 62. The two peaks correspond to maximum ab-
sorption at the light-shifted levels.

We realize that absorption is small in between the
peaks, especially around 5, =62. For the A atom, this
two-photon resonance corresponds to coherent popula-
tion trapping. In this probe-frequency range, probe ab-
sorption is very small and quadratic, while the nonlinear
phase shift n exhibits linear growth, as can be seen from
Fig. 3.

In order to obtain good QND coupling, one has to
keep absorption low on the probed transition and still re-
tain a reasonably large nonlinear frequency shift for the
probe beam. This can be obtained by tuning the probe
beam to the vicinity of the light-shifted level so that we
can operate in the wings of the absorption line. This may
be achieved by requiring that

a.
5a + 5a~,

a,
(10)

X, (CD)

Y, (CD)

R(cD) =X(CD) X +B,(cD),
X& CD

Y~(CD)

where the atomic-noise quadrature operators are ar-
ranged in the vector B,. We will outline this in greater
detail in Sec. VI. One may obtain analytical expressions
for the susceptibility matrix y and the atomic-noise
correlation matrix G, = ( B,B, ) under the following re-
strictions.

(1) We only calculate the zero-frequency component.
(2) We introduce an ordering scheme such that

&= l&~/&, ~
and rI, as defined in Eq. (9), are of the same

order of magnitude and only lowest-order terms in the
product of both parameters are considered.

Then we find for A- and cascade-model atoms that

0 0 0 0
0 0 q+b 0
0 0 a n

q 0 —n a

0 0 0
(12)

a~ a
Y.= —i 5a- — 5at

a, ' a,

with j=s,p. The annihilation and creation operators for
the fluctuations in the two light fields are denoted by 5a.
and 5a, whereas ak stands for the macroscopic mean
complex amplitudes of the two laser modes. Our
definition is especially convenient if the output beams are
measured with respect to the phases of the input beams.
The atomic-noise quadrature operators X', Yk are defined
analogously to the field quadratures and used to calculate
the atomic-noise correlation matrix [cf. Eq. (12)].

The quantum stochastic properties of the probe and
signal field depend on the linear atomic response to the
fields and on atomic-noise terms describing spontaneous
emission. In the frequency domain, this can be formulat-
ed concisely in terms of susceptibility coefficients which
establish a linear relation between fluctuations of the
atomic polarizations and light-field quantum fluctuations
[14]. If we denote the atomic response to the field fiuc-
tuations by R, then we find the simple relation

where

D
u hy

0 p
0 b 2a

—ib
2la

0 ib —2ia 2a

Throughout the rest of this paper, it will prove to be
convenient to introduce quadrature operators; hence, we
define

where the nonzero coefficients in the case of A atoms are
defined as
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AI 2
n = —C (probe frequency shift in units of I )p

qa'r,
a = —yIn =C (probe absorption),P D2

n, n, sQr, r,
q = —2+C, C (QND coefficient), (13)

n, r, s,s'Qr, r,b= —2+C C 0, I 2 D2
(correlated noise coefficient),

n I (I /y)n +b,
p=C, 4h (atomic signal-phase excess noise),s 2 I2 D2

where C, and C are the cooperativities for each field and
are defined in Sec. VI. Note that a and n have a slightly
different expression compared with u and n of Eq. (8).
The frequency shift n is only listed for completeness since
it can always be compensated by detuning the cavity a
corresponding amount into the opposite direction, there-
by maximizing the interaction between the two light
fields.

Using Eq. (12) and standard input-output relations as
developed by Gardiner and Collett [11],we are able to
evaluate the zero-frequency component of the three spec-
tral correlation coefficients characterizing [12] a QND
device. For completeness, we also give the equivalent in-
put noises as introduced in Ref. [13]; in our case, these
are related to the correlation coefficients by
C = ( 1+N'q )

' We ob. tain, for the zero-frequency
component of the spectral-measurement correlation
coefficient, characterizing the ability of the scheme as a
measurement device,

I

and

+1~2
~eq(Xin Yout)

4q'
(14b)

~&Xi Xout& ~2

C2(XmXout) — t t sym

& (x,'")'&
&
(x'"')'& (15)

In terms of equivalent input noises, this reads N'q=0.
Finally, we find, for the conditional variance describing
the state-preparation ability of the device,

y(Xout~ Yout) —I C2(Xin Yout)S P S P

(a+1)
4q +a +2a+ 1

(16)

The correlation coefficient of the signal-output amplitude
quadrature with its input counterpart gives information
about degradation of the signal field in the cavity. It is
found to be
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C2(Xin Yout)—
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(14a)

while we find

1 4q
V(Xout

~
Yout) ( 1 +& )2

(17)

V( Y;"')= I+2p+4q b+q
1+a (18)

From Eqs. (14) and (16), we realize that the requirement
q))max(a, 1) is essential to obtain good QND correla-
tions. Since a and q depend on the cooperativities C and
C„this requirement may be used to estimate the
minimum cooperativities compatible with good QND
performance.

We now calculate the degradation the signal phase ex-
periences due to the measurement. The minimum degra-
dation of the signal phase is obtained from the Heisen-
berg relation

y( Yout) y( Yout~ Yout)
S S P

h,2/I 2

FIG. 3. Probe absorption ~ and nonlinear phase shift n as a
function of the scaled atom-probe detuning h2/I 2. Zero ab-
sorption corresponds to the two-photon-resonance case L=O.
Note the quasilinear behavior of ~ around 5=0, where absorp-
tion =6 . The peaks occur at the light-shifted levels for
hz = 5E [cf. Eq. (7)], w—ith a width of the size of y.
hi =0,= 10, y =2 in units of I 2.

We realize that the signal phase has picked up some ex-
cess noise, which shows that after the measurement the
signal plus probe system is no longer in a minimum-
uncertainty state. Note that the parametric model [5,6]
which predicts a minimum-uncertainty state, cannot ac-
count for terms proportional to the coefficients b and p,
which are entirely due to atomic noise.

In order to show that the QND effect is not symmetri-
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C2(xinxout) 1 —a
1+a (19)

which only depends on the probe-absorption coefficient a.
Finally, the measurement correlation and variance are
given by

cal, we now swap signal and probe and consider a hy-
pothetical QND measurement of the probe-amplitude
quadrature by measuring the signal-phase quadrature. In
the limit under consideration, the degradation of the
probe amplitude is only due to linear losses, as shown by
the correlation coefficient

2

1.0

0.6

0
U

0.4
z
D

0.2

0.0
260 270 280 290 300 310 320 330

C2(~inyout) 4
b +0
1+a 1+2 +4 +q

9' 1+

V(X;"'~r;"')= ~, 1+2 +44 2 b+
(1+a ) 1+a

'

I (20)

We find that in this reversed situation the positive
atomic-phase excess noise p and the correlated atomic
noise b lead to an overall degradation of the QND perfor-
mances, which is confirmed by numerical solutions of the
complete model. This demonstrates clearly that in con-
trast to the parametric model [6], the QND scheme stud-
ied here is not symmetrical with respect to the exchange
of the signal and meter beams, as a result of additional
contributions from atomic-noise terms.

IV. A CONFIGURATION-NUMERICAL RESULTS
AND DISCUSSION

In this section we will give a qualitative discussion of
the results derived above and contrast them with the cor-
responding numerical solutions.

Since we are dealing with a complete model for the in-
teraction between probe and signal beams —i.e., all inter-
nal atomic degrees of freedom are accounted for —it is
not possible to derive compact analytical solutions for an
arbitrary set of parameters. Fortunately, we are mainly
interested in the case of signal Rabi frequencies much
stronger than the probe Rabi frequencies, and with the
further approximation of rI &( I [cf. Eq. (9)] it is possible
to derive simple analytical results for the zero-frequency
components of the spectral QND correlation coefficients.
A comparison with numerical results shows an excellent
overall agreement with the analytical approximations.
We may use the analytical results to contemplate promis-
ing parameter regions and general qualitative features.
An exact evaluation is eventually carried out by calculat-
ing the QND correlations numerically.

For all these plots, we are operating around the light-
shifted level, which leads to the smaller two-photon de-
tuning b.. The QND performances when working around
the other light-shifted level are not as good, which can be
understood by noting that the probe-absorption
coefficient a goes like b. , whereas the QND coefficient q
is proportional to b, [cf. Eq. (13)].

It is our objective to achieve almost perfect QND per-
formance, as characterized by the three QND coefficients
in Eqs. (14)—(16) for small cooperativities (» 10 ) and a
broad band of probe input detunings 52. In Figs. 4 and 5

h, /I

FIG. 4. Signal degradation (SD), measurement correlation
(MC), and conditional variance (VC) at zero frequency as func-
tions of the scaled atom-probe detuning. An instability occurs if
the probe is almost resonant with the light-shifted level. Insta-
bilities occur within the gray shaded area. The parameters are
Qp /9 0 005 5]/0 0 8 I [/I 2 1 and 0 200I 2 The
cooperativities are C, =2000 and Cp =500. Note the excellent
agreement of the analytical (dashed curve) with the solid numer-
ical solutions (solid curve). The analytical approximation to D,
(dashed curve) is equal to 1.

1.0

0.8

0.6

0
U

0.4
z
D

0.2

0.0
285 290 295

VC

300 305

A2/I

FIG. 5. Same as caption to Fig. 4 for very small cooperativi-
ties C, = 100 and Cp =50. Still reasonably good correlations can
be achieved when the probe is tuned to the slopes of the peak in
MC outside the central instability region.

we plot the measurement correlation (MC) signal degra-
dation (SD), and conditional variance (VC) for
0, /I 2=200 and 6, /0, =0.8 for different pairs of
cooperativities C, =2000, C =500 and C, =100,C =50.
For large cooperativities ( &)10; cf. Fig. 4), we find

indeed very good agreement, with peak height depending
only weakly on the ratio of the cooperativities, but not on
their size. For smaller cooperativities (cf. Fig. 5), howev-

er, this does not hold anymore and the analytical approx-
imations fail to describe the peak height properly while
still being a good approximation for the general shape.
Also, a narrowing of the peaks with decreasing coopera-
tivities is obvious. This feature eventually leads to a
lower limit for the cooperativities since the most interest-
ing region, the "flat" correlation maximum, is at some
stage exclusively occupied by the instability region.
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Operability of the device for too low cooperativities is
then confined to the steep slopes of the curve, leading to
unsatisfactory performance.

The disagreement between numerical and analytical
solutions for probe detunings 62 around and on reso-
nance with the light-shifted levels is due to the failure of
the assumption that g&&1 in those regions. In other
words, approaching the light-shifted levels means chang-
ing from dispersive to absorptive operating conditions.
Moreover, if the probe is almost resonant with the light-
shifted levels, we encounter a small unstable region where
the linearization done for the numerical computation (see
Sec. VI) breaks down. This is due to the fact that tuning
the coherent probe input to resonance with one of the
Rabi-split levels leads to gain for sideband frequencies,
which would eventually result in the buildup of small
coherent sidebands on the signal transition. In order to
describe the system properly in this situation by a linear-
ized analysis, one would have to include sidebands explic-
itly into the model from the beginning. Note that the
correlations can be significantly degraded as a result of
absorption, even outside the instability region.

In Fig. 6 we plot the three spectral correlation
coefficients as functions of the noise frequency co. We
realize that signal degradation is virtually nonexistent,
with SD less than 1 go for the same parameters as in Fig.
4 with 62=290I 2. The cavity decay rates are both equal
to 412, hence, except for SD, good QND performance
can be expected mainly for frequencies smaller than one
cavity linewidth. Note that at zero frequency MC is
around 95% and VC is around 5%. It is feasible to im-

prove those even further at the expense of having to in-
crease the cooperativities.

We shall now consider the effect of additional damping
on the QND performances of this scheme. In its present
form, our description of the A-model atom does not in-
clude damping terms for the atomic two-photon coher-
ence 00, between the two low-lying levels ~0) and ~1).
Such terms could arise from atomic collisions. While the
cascade structure of the ladder model naturally provides

for damping of the two-photon coherence between the
highest and lowest levels [cf. Fig. 1(b)] through spontane-
ous decays, no such effects are present in the A model.
Since relaxation between the two ground states may
influence the atomic dynamics in many realistic situa-
tions, we will now investigate the effect of two different
damping mechanisms.

Phase damping. Phase damping due to collisions will
only increase relaxation for the atomic coherences while
leaving the equations for the atomic populations un-
changed. Numerical evaluation of the QND correlations
in the parameter regions of interest, as discussed above,
shows that this kind of damping does not seriously de-
grade correlation between signal and probe beams, pro-
vided the additional damping constant y~ remains
reasonably small. This should, in fact, be guaranteed by
employing rather small cooperativities and, hence, low
atomic densities.

Ground-state relaxation. If we allow for population
transfer between the two low-lying states, additional
damping terms will affect all atomic operators. We find

that large relaxatiori rates, i.e., of the same size as the
other atomic rates, between states ~0) and ~1) deteriorate
the QND performance substantially. Moreover, we find

that less deterioration occurs if population transfer main-

ly occurs from the signal ground state to the probe
ground state. The correlation coefficients most affected
are MC and VC, while good signal input-output correla-
tion is retained. As an example, let us assume equal rates
for population transfer in both directions. The numerical
solution for the same parameters as in Fig. 4 and equal
ground-state relaxation rates of I „=0.1I 2 are compared
in Fig. 7 with the analytical approximations valid for
I „=0.We realize that good performance can now only
be achieved for a much smaller range of probe detunings
62. We also find that the conditional variance, and hence
the signal amplitude, has picked up some excess noise of
=0.05 unit vacuum fluctuations resulting from the in-
coherent recycling of electrons back to the ground state
of the signal transition. The fact that electrons may now

1.0—

0.8

0.6

0
U
g 04
z
D

02

0.6

0
U

0.4
z

0.2

0.0—
0

0.0
260 270 280 290 300 310 320 330

FIG. 6. Spectral correlation coefficients vs. frequency. Pa-
rameters are the same as in Fig. 4. 62=290I 2. Note the almost
perfect correlation between signal input and output due to the
quasitransparency of the medium around the signal input fre-
quency (atomic ghost transition).

FIG. 7. Zero-frequency correlation coefficients for same pa-
rameters as in Fig. 4 with mutual ground-state relaxation at rate
I „=0.11 2. The dashed lines represent the analytical approxi-
mations for 1"„=0.



4282 GHERI, GRANGIER, POIZAT, AND WALLS 46

be transferred incoherently back to the signal ground
state is the main cause for smaller QND correlations.

Strong relaxation between the ground states lets the
A-model atom resemble the far simpler two-level Raman
scheme, where it was shown that it is not possible to ob-
tain QND performance as good as in the present proposal
[12].

V. CASCADE CONFIGURATION

The cascade configuration used as a QND scheme has
already been studied in several papers. In Ref. [6] analyt-
ical expressions were derived in the parametric limit,
which cannot describe accurately the experimental re-
sults [5]. In the more complete calculation of Ref. [8],
the two beams had a similar intensity and no analytical
results for the QND criteria were derived. But here the
range of parameters considered allows us to derive ap-
proximated analytical expressions, as we did for the A
system in the previous sections.

The strong signal beam (with Rabi frequency n, ) is
tuned around the upper transition (labeled 1). The ampli-
tude of this signal is measured by the phase of the weak
probe beam (with Rabi frequency n ((n, ) tuned around
the lower transition (labeled 2). We work under the same
restrictions as for the A configuration; i.e., we calculate
only the zero-frequency component up to the lowest
significant order in the product of the two small parame-
ters e and g defined in a similar manner as in Sec. IV
(with the two-photon detuning now defined by
5=6,+ b,2). The susceptibility matrix X and atomic-
noise correlation matrix G, have the same structure as
for the A scheme [cf. Eq. (12)]. However, the parameters
n, a, b,p, q involved have different expressions, which are
the following:

AI 2n= —CP

c,r,qn= '—, (r,n,'+r,z'),

%'ithin this approximation there is no signal degradation
and the measurement correlation coefficient C (X,'"Yz"')
is related to the conditional variance V(X,'"'~ Y'"'),
describing the state-preparation ability of the device, by
V(X;"'~ Yz"')=1—C (X,'"Y'"'). So, in order to compare
the QND properties of the cascade configuration with
those of the A scheme within this approximation, we just
have to consider the expression of the measurement
coefficient. This coefficient only involves a and q, and
only the probe-absorption a has a different expression; we
should therefore focus on this extra term.

If we take exactly the same parameters as in Fig. 4, the
results are slightly degraded with respect to the A scheme
(0.93 instead of 0.96 for the measurement coefficient).
But in order to get closer to the QND performances of
the A scheme, one can decrease the extra term I &0, of
the probe absorption by taking a smaller I, [14]. We
tune the probe frequency around the light-shifted level of
the intermediate level that is the farthest away from the
bare atomic level as we did in Fig. 4. We then obtain (cf.
Fig. 8) similar QND performances as with the A
configuration. Note that we find the same disagreement
of the analytical approximated results and the numerical
results with this very narrow double-peaked structure as
for the A system.

This ladder scheme using a ghost transition gives
definitely better results than the ladder scheme treated in
Ref. [8] with two fields of comparable magnitude and
with exactly the same numerical method. The measure-
ment coefficient and signal degradation coefficient were
both of about 0.97, which is comparable to the present re-
sults, but the cooperativities were about 50 times larger
than those used here. From an experimental point of
view, the use of smaller cooperativities is more con-
venient. It indeed allows a reduction of the density of the
beam, which diminishes the number of collisions, and/or
operation with a better co11imated beam, which narrows
the Doppler width.

AA, Q
q= —2+c,c Ql, r,1 2

Qc,c,&r,r, r', a, ,n,'nb= —2
yr (n, +r, b, , /y ) D~

r,n,'n,' (r,n,'+r, a', )
p=c, r,

y r a2 (n2+r, af/) )i

(21)
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0.8

~o 0.6
I

0
V
a 0.4z
CV

0.2

Note that the probe-absorption coeScient a contains now
an extra term I,Q, due to two-photon absorption. The
consequence is that the probe absorption is never zero,
whereas it was the case for the A system at 6=0, where
we had coherent population trapping (see Sec. III). This
does not occur in the cascade system: At the two-photon
resonance 6=0, only the dispersion goes to zero. Final-
ly, it is to be noted that the QND coefficient q has exactly
the same expression as in the A configuration.

The three QND correlation coefficients have the same
appearance in terms of a, b,p, q as in Eqs. (14)—(16).

0.0
260 270 280 290 300 310

A2/I 2

320 330

FIG. 8. Zero-frequency correlation coefficients for the ladder
scheme vs scaled atom-probe detuning h~/I 2. The parameters
are the same as in Fig. 4 except that the decay rate of the upper
transition is decreased by a factor of 4. The dashed lines

represent the analytical approximated result. The gray area is

the unstable region.
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VI. MATHEMATICAL MODEL

This part of the paper is dedicated to a more thorough
theoretical description of the interaction of two laser-
light modes, labeled signal and probe, in the presence of
N three-level atoms inside an optical cavity. We assume
we can model the coherent input light beams into the
cavity by decomposing them into a classical coherent
part Ei(t) =EJexp( i co—i"t ) and a fluctuation term

;„dv B~ ( v) that is broadband around the input

center frequency cuj", with j=s,p. The empty cavity is as-
sumed to be resonant at frequencies co, and co, which are
supposed to be equal to the input frequencies of the
coherent light. The light 6elds inside the cavity are
modeled by single-mode operators A for those resonance
frequencies. Because of the presence of atoms in the cavi-
ty, the resonance frequencies of the cavity will change by
a certain amount, as shown in Sec. III. We will assume
that it is always possible to compensate for those frequen-
cy shifts by either changing the length of the cavity or de-
tuning the input beams.

The atoms are modeled by closed three-level systems
where the two dipole-allowed transitions enabled radia-
tive transitions from the two nondegenerate ground states
to a common excited state. The two ground states are la-

I

A. Hamijtonian

The theoretical description of the above system is given
by the explicitly time-dependent Hamiltonian %(t):

%(t) =%,y, +%„,+~;„,, (22)

consisting of three parts. The system Hamiltonian de-
scribes the interaction of N three-level atoms with two
quantized cavity light modes A, and A and their in-
teraction with two classical coherent inputs into the cavi-
ty denoted by E, and E, respectively:

beled ~0) and ~1), the excited state ~2). The two allowed
atomic transitions interact with incoherent fields 8, ( t ),j= I1,2], leading to spontaneous decay with decay con-
stants I, and I 2. Other relaxation mechanisms leading
to incoherent relaxation between the two low-lying states
or additional dephasing for the coherence between those
same levels as discussed in Sec. III can be included simi-
larly. The quantized intracavity 6elds A, and A are
perturbed by their interaction with the cavity reservoirs
B,(t) and 8~(t); the empty cavity damping rates are
denoted by I, and I, respectively. All noise operators
are modeled by quantuin white noise (QWN).

&s)„=Rg 'co, o"„+(02(r22+co,
N

+(otp
N (g, o—2oA, +H. c. ) —(gt o2) A~+H. c. )

'

@=1

+i'[[ A, E1,( t) —H. c. ]+ [ A E ( t) —H. c. ]} . (23)

The reservoir Hamiltonian describes the four baths responsible for cavity damping of the two electromagnetic modes
and atomic spontaneous-decay processes:

%„,=Pi f dvvB, (v)B, (v)+ f dvv82(v)82(v)+ f dvvB, (v)B,(v)+ f dvvB (v)Bq(v)
2 1 2 S P

(24)

The interaction between the system variables and various baths is described by the interaction Hamiltonian

N

@=1
dvBi(v)(r", 2+H. c. + gi dv82(v)(r02+H. c.

2V~ Ql

1/2

+l v8, v A, —H. c. +i
' 1/2

v8 v A —H. c.
V~CO

p

(25)

From this Hamiltonian we may now derive Ito-quantum
stochastic differential equations (QSDE} [15] for the 12
system operators in &,„,. This approach is equivalent to
the derivation of a master equation for the system-density
operator.

1/&N after having introduced an appropriate scaling.
We will also make the necessary assumption that the
numbers of photons in each cavity mode are such that
1V' &)1, for j=p, s. The introduction of the following
abbreviations is found to be useful:

B. Linearization

In order to simplify the analysis, we assume that we
may linearize the set of Ito equations around the nonzero
steady-state expectation values of a suitable set of system
operators. The linearization per se implies the existence
of a small quantity which serves as a series-expansion
coef6cient in an asymptotic power series. According to
Gardiner [15], this small parameter is determined to be

N p

N@=1

4'22 ~OO

Qk —lgk Ak

(26a)

(26b}

(26c)

(26d)
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C„= for (k, 1 )= (s, 1),(p, 2),
I k

(26e)

where C, and Cz are the cooperativity parameters for sig-
nal and probe fields, respectively.

For a large number of atoms, N, in the cavity, any sys-
tem operator S can be expanded into its semiclassical
mean plus a fluctuation term proportional to I /~¹

s=(s)„„+ s'+O-
&N N

(27)

This approximation is a reasonable one as long as the
correlations of the first-order terms remain sufficiently

smaller than 1V. Assuming this to be the case, i.e., not
operating too close to a critical point, we find the zeroth-
order or semiclassical equations for the atoms in a frame
rotating at the frequencies co,

'" of the signal laser input
and co~" of the probe laser input into the cavity to be

a, (r) =M. (r)+I . (28)

lT
& +01&+10&+12&+21&+02& +20&~2 &~1 j (29)

The matrix-valued time-evolution generator M, and the
inhomogeneous c-number vector I are given by

The atomic operators are arranged in the vector-valued
operator

M, =

'Vol

Q*

Q,

0 0

Q V12

0 0

—Q —Q'
P S

0 0

0 0

0 0 0

0 0
—QS

QQ
S

0 0

0 0 0y12

0 0 0 V 02

—Q'
—r2

0 0 0 V 02

0 2Q,* 2QS

2Q* 2Q —
y2

(30)

and

I= —[0,0,0,0,0,0, —,'(2I +I, ), —,'(21,+I )]T . (31)

The complex decay-detuning coefficients y," and the real

y; are functions of the natural atomic linewidths I,, I 2.
We find, for the decay constants,

y01 =i 6

y„=r,+r, + a, ,

y =I,+I +ih

r,'=-', (r, +2r, ),
y2 V2

y', = —', (2r, +r ),
Vl Vl

and for the detunings,

6
1
—

CO2 C01 COs

62=602 Ci)&

In order to simplify typing, we assume we may leave
out brackets denoting expectation values. The
fluctuation-correction terms for system operators are
denoted by carets to distinguish them clearly from their
semiclassical values. For the signal-field fluctuation

operator Q, we find the following quantum stochastic
differential equation:

dQ, (t)= —(r, +id, , )Q, (t)dt —C, r, r,o, dt

+2r, C,I,d—B,(t), (32)

where (,dB, (t)dB, (t)) =dt and all other combinations
are zero for ordinary vacuum inputs. The detuning 6, is

defined analogously to the atom —input-field detunings.
The equations for the other laser-field fluctuation opera-
tors may now be obtained by simple index manipulations
from Eq. (32). Since any correlation between probe and
signal laser fields can only arise from their common in-
teraction with the atoms, we will have to solve the com-
plete set of equations for all 12 atomic and field fluctua-
tion operators to evaluate any kind of correlation func-
tion between signal and probe fields. Although the pro-
cedure to calculate those correlations numerically is
straightforward, it is not suitable to obtain analytical re-
sults.

An alternative procedure useful for analytical approxi-
mations is to derive the susceptibility matrix y(co) intro-
duced in Sec. III. This can be done from the Ito QSDE
for the 12 fluctuation operators, using projection tech-
niques in atom-and-field subspaces and Fourier trans-
forms. A more straightforward way is described in Ref.
[10]: The atomic response is calculated first as if the
atoms were in free space, using the quantum regression
theorem. This yields directly y(co) and G, (co), which are
then inserted in the standard input-output formalism to
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get the field correlation functions. Both procedures actu-
ally yield exactly the same results. Finally, in order to
obtain the compact results listed in Eqs. (12) and (21), it is
necessary to carry out a perturbative expansion in the pa-
rameters e and g. This is done the most convenient way
using computer software capable of carrying out formal
algebraic computations.

VII. CONCLUSIONS

tained approximated analytical results which are in very
good agreement with the numerical results. For the
range of parameters considered in this paper, we have not
found essential diff'erences in the QND performances of
the A and cascade configurations. The QND perfor-
mances predicted by this scheme are almost perfect and
rather realistic from an experimental point of view. They
might, therefore, allow important improvements in the
experimental realization of QND measurements.

We have analyzed in this paper a scheme for the reali-
zation of QND measurement using ghost transitions in
three-level atoms, either in a A configuration or in a cas-
cade configuration. The principle is that we manage to
transfer most of the atomic population into one level (one
of the ground levels for the A configuration and the
ground level for the cascade scheme), which leaves the
other transition almost empty. The strong signal beam
tuned around this ghost transition is therefore hardly ab-
sorbed, while the weak meter beam probes the light-
shifted levels induced by the signal beam. We have ob-
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