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Quantum-nondemolition measurements using cold trapped atoms:
Comparison between theory and experiment

A. Sinatra,* J. F. Roch, K. Vigneron, Ph. Grelu, J.-Ph. Poizat, Kaige Wang,† and P. Grangier
Institut d’Optique, Boıˆte Postale 147, F-91403 Orsay Cedex, France

~Received 15 July 1997!

In this paper we present a detailed theoretical analysis of a recent quantum-nondemolition experiment in
optics using cold atoms in a magneto-optical trap as a nonlinear medium. A signal beam and a meter beam
from two independent lasers are coupled within aL-type three-level scheme in theD1 line of 87Rb atoms. The
experimental results for the relevant quantum correlations of the fields, that represent up to now the best
achievements for a single back-action evading measurement, are found in a remarkably good agreement with
the theoretical predictions from a fully quantum model for three-level atoms in a doubly resonant cavity.
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PACS number~s!: 42.50.Lc, 32.80.Pj, 42.50.Dv, 42.65.Pc
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I. INTRODUCTION

A. General features

As summed up by the Heisenberg uncertainty relati
noise is introduced into a physical system when a quan
measurement is performed on a given observable. The p
ciple of quantum nondemolition~QND! measurements
which was first introduced theoretically by Braginsky a
co-workers@1# and Thorneet al. @2#, is to overcome this
measurement noise by repeatedly ‘‘hiding’’ it in another o
servable which is not of interest. In the case where the n
is entirely kept into an observable which is conjugate w
the measured quantity, the measurement is said to be b
Action evading~BAE!. Though initially proposed for me
chanical oscillators, these ideas were greatly developed,
theoretically and experimentally, in the field of quantum o
tics.

In particular, quantum measurements performed
propagating laser beams are very good candidates for im
menting QND or BAE schemes. The basic idea of the
schemes is to couple two light beams, usually called ‘‘s
nal’’ and ‘‘meter’’ beams, via an optically nonlinear mediu
~see Ref.@3# for theoretical proposals!. Then, for an appro-
priately designed coupling, direct or homodyne detection
the meter beam will perform a BAE measurement on
signal beam@4–10#. The nonlinear medium may display e
ther second-order (x (2)) or third-order (x (3)) optical nonlin-
earities. The former have the important advantages of be
well understood, and of adding very small excess noise to
interacting light beams; they were used in several succes
experiments~see, e.g., Ref.@9# and references therein!. On
the other hand, the latter (x (3)) nonlinearities are usually
accompanied by significant excess noise from the nonlin
medium, which has been attributed to thermally excited B
louin scattering in optical fibers@4,7#, or to absorption and/o
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spontaneous emission noise in quasiresonant media@11,6#.
Nevertheless the last word about the exploitation of (x (3))
nonlinearities for quantum nondemolition experiments h
not yet been pronounced.

A theoretical analysis done for motionless atoms@12# pre-
dicted that it should be possible to obtain almost full cont
of absorption and spontaneous emission processes, prov
that appropriate laser powers and detunings are used. O
other hand, the atomic media used so far, which are ato
beams or vapor cells, also exhibit other types of fluctuatio
associated with collisions and/or atomic motion@8#. Atomic
motion causes fluctuations in the refractive index due to
fluctuating number of atoms in the interaction region, a
thus degrades quantum noise reduction effects. An open
to improve atomic media is then clearly to use a medium
cold trapped atoms@13#; in these media, in fact, the tim
scale of the fluctuations in the number of interacting p
ticles, characterized by the transit time of the atoms acr
the interaction region, is about three orders of magnitu
slower than in atomic beams or vapor cells. In other wor
atom number fluctuations in traps have characteristic
quencies that are typically in the kHz range, and do no aff
the noise analysis that is performed in the MHz range~see,
for example, Sec. V!. Moreover, despite the lower densitie
usually obtained in traps with respect to atomic beams
vapor cells, the elimination of the Doppler broadening of t
atomic lines allows one to control small atomic detunin
accurately, and consequently to achieve large nonlinear
fects. Though these arguments have only a qualitative c
acter, it will be shown below that, when compared to atom
beam experiments@6,8,14#, QND experiments performed
with cold atoms do achieve both an improved efficiency a
an improved agreement with theoretical models.

B. Motivations of the work

In this article we give a detailed theoretical analysis o
recent experiment@10#, where QND measurements are pe
formed using rubidium atoms in a magneto-optical tr
~MOT! as a nonlinear medium. Using aL-type three-level
system in theD1 line of 87Rb, the observed performance
are quantitatively the best obtained so far for a single ba
action-evading measurement. Moreover, the MOT and
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57 2981QUANTUM-NONDEMOLITION MEASUREMENTS USING . . .
QND effect are both running continuously at the same tim
and mutual perturbations have been avoided by using dif
ent optical transitions and a ‘‘dark-spot’’ technique@15#.
From the theoretical viewpoint, we extend the analysis d
in @12# on QND measurements using three-level atoms i
ghost transition scheme, by including the case in which
fields are not resonant in the cavity. How this scheme can
realized and optimized in a real experiment will be analyz
in detail, by taking explicitly into account the constrain
imposed by the optical cavity and by the atomic energy-le
configuration.

C. Overview of the paper

In Sec. II we briefly introduce the criteria that were d
veloped to evaluate the efficiency of a real quantum n
demolition device. The model is presented in Sec. III. In S
IV we illustrate the configuration used to perform the QN
measurement, and show how we can choose the adjus
parameters of our system in order to optimize the QND p
formances. In Sec. V we present the setup of our experim
Finally, in Sec. VI we compare the results of the model w
the experimental results.

II. CHARACTERIZATION OF A REAL QND
MEASUREMENT

A. Introduction

Appropriate criteria for evaluating the efficiency of sy
tem as a ‘‘real’’~i.e., nonideal! QND device were discusse
in several papers@16,17#. It is now generally admitted tha
three necessary criteria for BAE operation of a device
given by looking, on the one hand, at its input-output pro
erties, and on the other hand at the quantum correlat
established between the signal and meter outputs.

More precisely, we are interested in the small tim
dependent quantum fluctuationsdXs(t) of the signal field
amplitude quadratureabout its steady-state value, defined
the relation:

Xs~ t !2^Xs&st5dXs~ t !, ~1!

and we are willing to ‘‘read out’’ those fluctuations in th
meter fieldphase quadraturefluctuationsdYs(t) about the
steady-state value which are defined in the same fashion

Ym~ t !2^Ym&st5dYm~ t !. ~2!

With a larger generality, the signal field amplitude may ca
out a smallcoherent modulation Xs8(t), the amplitude and
the frequency of the modulation being much smaller than
mean amplitude and the optical frequency of the field,
spectively. The steady state of the system is thus ‘‘mo
lated’’ about the stable time independent solution^Xs&st,
^Ym&st, and one has

Xs~ t !2^Xs&st5Xs8~ t !1dXs~ t !, ~3!

Ym~ t !2^Ym&st5Ym8 ~ t !1dYm~ t !, ~4!

where, as in Eqs.~1! and~2!, the terms which are kept on th
right-hand side are small and will be treated linearly.
,
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regarding the QND device as a black box with two inp
channels and two output channels represented by the inc
ing and outcoming signal and meter fields, we are interes
in describing how the incoming signal amplitude fluctuatio
dXs

in(t) or modulationsXs8
in(t) are transferred to the two

output channels of the device represented by the signal
the meter outputs. In an ideal QND device, the incom
fluctuations or modulations of the signal amplitude are l
unchanged at the signal output, and they are at the same
perfectly reproduced by the meter output, allowing us to p
form an ideally accurate and nondestructive measurem
For real experiments three criteria were developed to qu
tify the efficiency of a system as a QND device, by taki
inspiration from the possible applications of the nondestr
tive measurements as detailed below.

B. Input-output transfer coefficients and correlations

A first important application of the QND measuremen
for example in the field of telecommunications, is related
the possibility of reading an amount of information encod
in a beam without adding noise. Let us assume, for exam
that the experimenter gives a classical modulation to the
nal amplitude at a certain frequency. We would like
‘‘read’’ the modulation, which represents the informatio
carried by the signal field, without degrading it, thus leavi
the information available for other users along the sa
transmission line.

By restricting ourselves to the linearized regime for qua
tum fluctuations and coherent modulations, we can cons
the QND device as a linear amplifier, and study how t
modulation and the noise are transferred from the signal
put channel to the signal output and the meter output ch
nels. In the frequency space, by introducing the Fou
transform ~denoted with the tilde! of the time dependen
quantities defined above, one has

X̃8s
out~v!5gsX̃8s

in~v!, ~5!

dX̃s
out~v!5gsdX̃ s

in~v!1Bs
add~v! ~6!

for the signal output channel, and

Ỹ8m
out~v!5gmX̃8s

in~v!, ~7!

dỸm
out~v!5gmdX̃ s

in~v!1Bm
add~v! ~8!

for the meter output channel, wheregs andgm represent the
gains of the amplifier in the signal output and in the me
output channel, respectively, which are the same for the
nal input noise and the modulation, whileBs

add andBm
add rep-

resent the extra noises added by the amplifier in the
channels, which could come for example from the atom
noise or from the input meter noise and the signal ph
noise@dỸ s

in(v)# processed by the system. By assuming t
the fields injected in the QND device are in a coherent st
we suppose thatBs

add and Bm
add are not correlated with

dX̃ s
in(v); a more general treatment was given in Ref.@17#.

The signal-to-noise ratio~SNR! for the input channel of the
signal field is then defined as the ratio between the inten
of the small classical modulation given to the signal fie
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2982 57A. SINATRA et al.
amplitude quadrature at a certain frequency and the quan
noise power in the same quadrature at the same frequen

Rs
in5U ^X̃8s

in~v!&2

^dX̃ s
in~v!2&

U , ~9!

and the same quantity can be defined for the two ou
channels:

Rs
out5U ^X̃8s

out~v!&2

^dX̃s
out~v!2&

U and Rm
out5U ^Ỹ8m

out~v!&2

^dỸm
out~v!2&

U .
~10!

One can then define two quantitiesTs and Tm , which
describe how the incoming SNR~9! is transmitted to two
output channels of the QND device:

Ts5
Rs

out

Rs
in and Tm5

Rm
out

Rs
in . ~11!

From Eqs.~5!–~8!, one has

Ts5
^dX̃s

in~v!2&

^dX̃ s
in~v!2&1^@dBs

add~v!/gs#
2&

and

Tm5
^dX̃s

in~v!2&

^dX̃ s
in~v!2&1^@dBm

add~v!/gm#2&
. ~12!

The coefficientTs evaluates to what extent the measu
ment is nondestructive, i.e., how the signal-to-noise ratio
degraded after the measurement:Ts51 for an ideal nonde-
structive measurement, whileTs50 if the measurement is
totally destructive. Similarly,Tm evaluates the efficiency o
the measurement: a perfectly accurate measurement w
correspond toTm51, while Tm50 if no information is
gained. For achieving QND performances, one requires
Ts1Tm.1, which can be obtained only by using a phas
sensitive device. On the other hand,Ts1Tm51 is the per-
formance of a simple beam splitter@17#. These transfer co
efficients are very useful because they are directly acces
in an experiment. The SNR values can indeed be visual
very easily on a spectrum analyzer, and it is then straight
ward to measure the various SNR and to work out the tra
fer coefficients.

From a formal point of view, it is also possible to consid
the normalized correlations between the meter or signal
put and the signal input quantum fluctuations, which w
first introduced by Hollandet al. in Ref. @16#, and which we
will calculate theoretically. Precisely one defines

Cs5
u^dXs

indXs
out&vu2

^dXs
indXs

in&v^dXs
outdXs

out&v
,

Cm5
u^dXs

indYm
out&vu2

^dXs
indXs

in&v^dYm
outdYm

out&v
, ~13!

where^AB&v denotes the Fourier transform of the symm
trized correlation function between the two operators
brackets:
m
y:
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^AB&v5E
2`

1`

e2 ivt^A~ t !B&symdt with

^A~ t !B&sym5^A~ t !B1BA~ t !&/2. ~14!

Contrary to the previous ones, these quantities canno
measured directly in a single BAE experiment, because
input fluctuations are not known in advance. However, it c
be shown that in the linearized regime for fluctuations a
small modulations, and for coherent input states of the fie
into the QND device, one simply has

Cs5Ts and Cm5Tm , ~15!

and the correlation coefficients can be therefore calcula
and used as the transfer coefficients; we emphasize, how
that this is not generally true when the input beam has ph
dependent excess noise, in which case some precaution
required@17#.

C. Conditional variance

A second application of the QND measurement conce
the situation where we are interested directly in the quan
fluctuations of the fields. If the intensity fluctuations of a
incoming beam are measured in a nondestructive way,
acquired information can be used, at the output of the Q
device, to correct the signal beam by reducing its fluct
tions. The third QND criterion, relative to this application,
given by the output conditional variance of the signal fie
given the result of a measurement on the meter field:

Vsum5^dXs
outdXs

out&v~12Csm!, ~16!

whereCsm is a normalized correlation between the meter a
the signal outputs,

Csm5
u^dXs

outdYm
out&vu2

^dXs
outdXs

out&v^dYm
outdYm

out&v
, ~17!

and wherê AB&v is defined as in Eq.~14!.
For an ideal QND device,Csm51 andVsum50, while in a

real device one requires that the information gained by
measurement is sufficient to reduce the intensity fluctua
of the initial beam under the shot-noise level, correspond
to Vsum,1.

In a QND experiment, the signal noise reduction is us
ally not implemented, and the conditional varianceVsum is
measured electronically by subtracting the photocurren
the meter readoutYm

out from the photocurrent of the outgoin
signal Xs

out, with an appropriate gain or attenuation. Mo
precisely, the quantum fluctuations of these recombined
rents will be given by the spectral variance of (Xs

out

2gYm
out), whereg is an electronic gain or attenuation. In th

ideal case, the meter beam will reproduce the actual nois
the output signal beam up to a multiplicative factor, and
will be possible to correct exactly the signal noise by brin
ing the variance of (Xs

out2gYm
out) to zero. In the general case

the variance of (Xs
out2gYm

out) is
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57 2983QUANTUM-NONDEMOLITION MEASUREMENTS USING . . .
Vsum
~g! 5^dXs

outdXs
out&v1ugu2^dYm

outdYm
out&v

22 Re~g^dXs
outdYm

out&v!; ~18!

the minimum value of this quantity is obtained by choosi

g5^dXs
outdYm

out&v* /^dYm
outdYm

out&v , ~19!

for which choice one has in fact

Vsum
~g! 5Vsum , ~20!

with Vsum given by Eq.~16!. In a real experimental situation
the amplitude and phase of theg factor are adjusted using a
attenuator and a delay line in order to minimize the pho
current difference. The minimum noise level obtained us
this procedure gives the value ofVsum .

III. MODEL

A. Equations

We consider a three-level atomic medium at rest, ins
an optical ring cavity;L is the roundtrip length of the cavity
occupied by the medium for a lengthL. Two laser fields of
carrier frequenciesv1 andv2 are injected in the cavity; the
fields are supposed to be close to resonance with two ato
transitions frequenciesv r and vs , and with two cavity
eigenfrequenciesvc1 andvc2 . The cavity is single ended fo
each field,Ti ~i 51 and 2! being the transmissivity of the
coupling mirror. We introduce the decay constants of
fields amplitudes inside the empty~lossless! cavity:

k15
cT1

2L , k25
cT2

2L , ~21!

wherec is the speed of light in vacuum, and the normaliz
empty cavity detunings:

u15
vc12v1

k1
, u25

vc22v2

k2
. ~22!

The atoms are described as sets of three energy levels
posed in a lambda configuration~Fig. 1!. By g1 andg2 we
denote the decay rate constants of the atomic popula
from the excited levelu2& towards levelsu1& and u3&, respec-
tively, while gw , defined as half of the total population d
cay rate from the upper level,

gw5
g11g2

2
, ~23!

FIG. 1. Energy-level scheme of theL three-level atoms.
-
g

e

ic

e

is-

n

is the decay rate constant of the atomic polarizations 1-2
3-2 in the radiative limit. We defineD1 andD2 the normal-
ized atomic detunings:

D15
v r2v1

gw
, D25

vs2v2

gw
; ~24!

please note that with definitions~24! positive detunings are
red detunings (vatom,vlaser). The operators describing th
atoms are the polarization operators:s12, s13, and s23
obeying the commutation rules

@s i j ,skl#5d jks i l 2d l i sk j , i , j 51,2,3, ~25!

where thed i j are Kronecker deltas, and the population inve
sions:r 351/2(s222s11) ands351/2(s222s33). The reso-
nant cavity modes are described by the usual boson crea
and annihilation operatorsai

† andai ~i 51 and 2!, with

@ai ,ai
†#51, i , j 51,2. ~26!

The evolution of the system is governed by a master eq
tion for the system density operatorr, which, in the interac-
tion picture, has the form

]r

]t
5@2 i ~La1L f1Lext1Laf!1La1L f #r, ~27!

where

Lar5 2
3 $~2v r2vs!@R3 ,r#1~2vs2v r !@S3 ,r#%,

L fr5~vc12v1!@a1
†a1 ,r#1~vc22v2!@a2

†a2 ,r#,

Lextr5 i $k1@~«1a1
†2«1* a1!,r#1k2@~«2a2

†2«2* a2!,r#%,

Lafr5 i $g1@~a1
†R22a1R1!,r#1g2@~a2

†S22a2S1!,r#%,

Lar5 (
n51

N
g1

2
~@s12

n r,s21
n #1@s12

n ,rs21
n # !

1
g2

2
~@s23

n r,s32
n #1@s23

n ,rs32
n # !,

l fr5k1$@a1r,a1
†#1@a1 ,ra1

†#%1k2$@a2r,a2
†#1@a2 ,ra2

†#%.

In this master equation we introduced the collective atom
operatorsR1, R2, S1, S2, T1, T2, R3 , andS3 constructed
from the single-atom operatorss21

n , s12
n , s32

n , s23
n , s31

n ,
s13

n , r 3
n , ands3

n , respectively, as described in Ref.@18#, and
obeying the same commutation rules. The termLar de-
scribes the free evolution of the atoms according to
single-atom Schro¨dinger Hamiltonian

Ha5 2
3 \@r 3~2v r2vs!1s3~2vs2v r !#, ~28!

where we have conveniently defined the energy of levelu2&
asEu2&5\(vs1v r)/3 in order to get rid of constant factors
Similarly, L fr describes the free evolution of the two cavi
modes andLextr accounts for the driving fields«1 and «2
injected in the cavity. The interaction termLa fr describes
the coupling between fields and atoms, which is written
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the dipole and rotating-wave approximations,g1 andg2 be-
ing the coupling constants for the transitions 1-2 and 3
respectively. The non-Hamiltonian termLar accounts for
the decay of the atomic polarizations and population inv
sions~N is the number of atoms!, while L fr accounts for the
decay of the intracavity fields due to the escape of phot
from the semireflecting cavity mirrors. For simplicity, he
we neglect the contributions due to collisions to the decay
the atomic polarization, restricting ourselves to the radiat
limit.

By introducing the normalized classical variables, rep
senting mean values of the atomic operators,

v52
&

N
^R2&, w52

&

N
^S2&, z52

1

N
^T2&,

m52
2

N
^R3&, n52

2

N
^S3&, ~29!

and the normalized Rabi frequencies proportional to the
racavity and input fieldsEi andEi

in ~i 51 and 2!,

xi5
&gi

gw
Ei with Ei5^ai& ~ i 51,2!,

yi5
&qi

gw

2

ATi

Ei
in with Ei

in5« i

ATi

2
~ i 51,2!, ~30!

the semiclassical equations for the normalized variables

ẋ152k1@~11 iu1!x12y112C1v#, ~31!

ẋ252k2@~11 iu2!x22y212C2w#, ~32!

v̇52gw@~11 iD1!v2x1m1x2z#, ~33!

ẇ52gw@~11 iD2!w2x2n1x1z* #, ~34!

ż52gwF i ~D12D2!z2
1

2
~x1w* 1x2* v !G , ~35!

ṁ52g1F1

3
~h12!~m1n21!1

gw

g1
~x1v* 1x1* v !

1
gw

2g1
~x2w* 1x2* w!G , ~36!
,

r-

s

f
e

-

t-

ad

ṅ52g1F1

3
~112h!~m1n21!

1
gw

2g1
~x1v* 1x1* v !1

gw

g1
~x2w* 1x2* w!G , ~37!

where we have introduced the ratioh5g2 /g1 and the coop-
erativity parameters

C15
g1

2N

2k1gw
, C25

g2
2N

2k2gw
~38!

proportional to the number of atoms that characterize
strength of the coupling between atoms and the two field

B. Steady state

Due to the high degree of symmetry of the equations
the lambda system, it is possible to calculate analytically
steady-state solution for the mean values of the atomic
erators~29! and the intracavity fieldsx1 andx2 , as a function
of the input fields intensities and the remaining system
rameters.

In the following we give the exact analytical solution fo
the intracavity fields in the general case for the system
rameters. The steady-state mean values are calculate
solving the system of nonlinear equations obtained by set
the right-hand sides of Eqs.~31!–~37! to zero.

By suitable redefinition of the phases of the polarizati
variables and of the input fields, it is possible have the i
racavity fieldsx1 and x2 real numbers at steady state.

particular we introduce the new variablesṽ5ve2 if1
s
, w̃

5we2 if2
s
, z̃5ze2 i (f1

s
2f2

s), ỹi5yie
2 if i

s
, and x̃i5uxi u ~i 51

and 2!, wheref i ~i 51 and 2! is the phase of thei th field at
steady state. We shall use these variables in the follow
although we omit the ‘‘tildes’’ for typing convenience.

1. Solution in the general case

As we said, it is possible to solve exactly the Bloch equ
tions ~33!–~37! at steady state, finding the analytical depe
dence of the atomic variables on the fields variables (x1 ,x2)
and system parameters. By substituting the solutions of
Bloch equations in Eqs.~31! and ~32! at steady state, one
obtains the solutions for the fields, which read
x1
25

uy1u2

@112C1b2I 2P#21@u112C1bI2~hI 11I 22bD1!P#2 , ~39!

x2
25

uy2u2

@112C2b2hI 1P#21@u222C2bI1~hI 11I 21bhD2!P#2 , ~40!
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where we have defined

g52
gw

g1
, I 15x1

2, I 25x2
2, b52~D12D2!, ~41!

and where

P5H hI 1
31I 2

31~2h11!I 1
2I 21~h12!I 1I 2

212bD2hI 1
2

22bD1I 2
21bF3

2
gb1~11h!~D22D1!G I 1I 21b2h~D2

2

11!I 11b2~D1
211!I 2J 21

. ~42!

2. Phases of the input and output fields

Let us consider Eqs.~31! and ~32! at the steady state
from Eq. ~30!, one has

E1
in5M1@~11 iu1!x112C1v#, ~43!

E2
in5M2@~11 iu2!x212C2w#, ~44!

where Mi5(gwATi)(2&gi)
21 are proportionality con-

stants. The phasesQ1
in and Q2

in of the input fields are then
calculated asQ1

in5arctan@Im(Ei
in)/Re(Ei

in)# for ~i 51 and 2!.
By using Eqs.~30!, ~43!, and~44!, and the boundary condi
tion for our single-port cavity,

Ei
out1Ei

in5ATiEi ~ i 51,2!, ~45!

one has

E1
out52M1@~211 iu1!x112C1v#, ~46!

E2
out52M2@~211 iu2!x212C2w#, ~47!

from which the phases the phasesQ1
out andQ2

out of the output
fields are calculated in the same way.

3. Double-resonance condition

By using the steady-state solutions~39! and~40!, we may
easily find the condition in which both fields are resonant
the cavity at the same time. This situation is particula
favorable for the QND experiment@12#, and it can be ex-
pressed as a precise requirement on the cavity detunings
input fields amplitudes, given certain values of the intrac
ity fields intensitiesI 1 , andI 2 , and atomic detuningsD1 and
D2 . Such requirements read

u1522C1bI2~hI 11I 22bD1!P, ~48!

u252C2bI1~hI 11I 21bhD2!P, ~49!

uy1u5AI 1~112C1b2I 2P!, ~50!

uy2u5AI 2~112C2b2hI 1P!. ~51!
nd
-

It should be noted that, in practice, it will not be trivial t
realize the double-resonance condition for a given cavity
for a given atomic system. On the one hand, the choice of
laser frequencies fixes the cavity and atomic detunings, a
on the other hand, for the fields to be resonant, these q
tities have to linked by relations~48! and ~49!. This con-
straint will be discussed below.

C. Constraint on the detunings

We think it is worth considering in some detail how th
double-resonance conditions~48!–~51! can be achieved in an
experiment; to this aim, we introduce the normalized det
ings

DA5
v r2vs

gw
, DC5

vc12vc2

k1
, ~52!

representing the distance in frequency between the two lo
atomic levels and between the two cavity eigenfrequenc
nearly resonant with the input fields, respectively. We po
out that, due to its normalization,DC does not depend on th
cavity length. By construction, a relation holds between
cavity and the atomic detunings introduced so far:

u15S k2

k1
D u25~D12D22DA!

gw

k1
1DC . ~53!

Equation ~53! tells us that once the distance in frequen
between the two lasers is fixed, for example, by our choice
the atomic detunings, the difference between the cavity
tunings is automatically fixed by the properties of the cav
throughDC , k1 , andk2 . On the other hand, if we need bot
fields at resonance in the cavity, the cavity detunings sho
compensate for the phase shifts introduced by the ato
which impose that:

u12S k2

k1
D u25F~C1 ,C2 ,I 1 ,I 2 ,D1 ,D2!, ~54!

whereF is a function of the indicated parameters which
obtained easily from Eq.~48! and ~49!. Equations~53! and
~54! represent thus two independent requirements on
quantity u12(k2 /k1)u2 which should be fulfilled at the
same time. In particular, the right-hand sides of Eqs.~53! and
~54! should be equal, which constraints, for a given cav
and a given medium, the possible values of the atomic
tunings and intracavity fields for which the double-resonan
condition can be achieved.

We will return to this constraint on parameters in Sec.
B by considering in particular the case of our experimen
setup and the mean fields configuration that we use to
form the QND measurements. Before this, however,
would like to go back to Eq.~53! and make some furthe
remarks. Equation~53! is a relation between the cavity an
the atomic detunings that is automatically fulfilled in a re
experiment, suggesting that the four parameters of our mo
should not be considered as independent. In order to eval
the significance of this relation in the different experimen
situations, we rewrite Eq.~53! as
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u12S k2

k1
D u25

4p

T1
S 1

l2
2

1

l1
DL1DC , ~55!

where we used Eqs.~21!, ~24!, and~52!. Now several situa-
tions are possible. Suppose first that the frequenciesv1 and
v2 of the input fields are well separated on the optic
frequency scale~as, for example, in the experiments d
scribed in Refs.@6, 8#!. Equation~55! shows that extremely
small adjustments of the cavity lengthL, on the order of
1/@(1/l1)2(1/l2)#;l, are in this case sufficient to adjust
will the differenceu12(k2 /k1)u2 once the two laser fre
quencies have already been fixed. In such conditions, ato
and cavity detunings can in fact be considered as indep
dent parameters; and in particular the double-resonance
ditions ~48! and ~49! can be realized without any restrictio
on the atomic detuningsD1 andD2 . Let us now consider the
opposite case in which the two frequenciesv1 and v2 are
very close one another. This could be, for example, the c
when the two ground levels of the lambda scheme are
generate Zeeman sublevels. Ifv1 and v2 are only a few
MHz apart, adjustments of the cavity length on the order
the meter ~that is of course out of reach in an experime!
would be necessary in order to change the differenceu1
2(k2 /k1)u2 by some units when the laser frequencies ha
already been fixed. In this case Eq.~53! represents a seriou
constraint that cannot be overcome by adjustments of
cavity length. In between the two limiting cases conside
above, there are situations in which, if on the one hand
~53! represents a real constraint, still some room is left
small adjustments of the cavity detunings by significa
changes ofL. A similar situation is encountered in the e
periment with cold atoms that we consider in detail in th
paper~Sec. V!, where the two ground levels of the lambd
scheme are hyperfine sublevels 6.83 GHz apart.

D. Quantum noise analysis

In order to calculate the QND coefficients defined in S
II, we are interested in the time-dependent correlation fu
tions of the fields whose amplitude and phase fluctu
around a steady-state mean value. We consider the ca
which the the fluctuations are small with respect to the m
values and a linearized treatment of the fluctuations is p
sible. LetJ i

f be a certain quadrature of thei th field ~i 51
and 2!, relative to the reference phasef:

J i
f5aie

2 if1ai
†eif. ~56!

In the notations of Sec. II, and referring to the phases of
input and output fields at steady state introduced in S
III B, one has

dXs
in5dJ

2
Q2

in

dXs
out5dJ

2
Q2

out

dYm
in5dJ

1
Q1

in
~p/2!

dYm
out5dJ

1
Q1

out
1~p/2!

~57!

where bydJ i
f we denote the time-dependent fluctuation

the operatorJ i
f around a steady-state point in the Heise

berg picture:
-

ic
n-
n-

se
e-

f

e

e
d
q.
r
t

.
-

te
in

n
s-

e
c.

f
-

dJ i
f5daie

2 if1dai
†eif, with dai5ai2^ai& ~ i 51,2!.

~58!

By using the the input-output relations@19#

ai
out1ai

in5A2k iai ~ i 51 and 2!, ~59!

whose classical counterpart is represented by Eq.~45!, and
assuming that the input fields are in a coherent state,
obtains

^dXs
in~ t !dYm

out&sym5 iAk1k2 Q~ t !†^@a1
†~ t !,a2#&ei ~Q1

out
2Q2

in
!

2^@a1
†~ t !,a2

†#&ei ~Q1
out

1Q1
in

!

2^@a1~ t !,a2#&e2 i ~Q1
out

1Q2
in

!

1^@a1~ t !,a2
†#&e2 i ~Q1

out
2Q2

in
!
‡, ~60!

^dXs
in~ t !dXs

out&sym5k2Q~ t !†2^@a2~ t !,a2#&e2 i ~Q2
out

1Q2
in

!

1^@a2
†~ t !,a2

†#&ei ~Q2
out

1Q2
in

!

1^@a2
†~ t !,a2#&e2 i ~Q2

out
2Q2

in
!

2^@a2~ t !,a2
†#&ei ~Q2

out
2Q2

in
!
‡

2d~ t !cos~Q2
out2Q2

in!, ~61!

^dXs
out~ t !dYm

out&sym522iAk1k2@2^:a1~ t !a2 :&

3e2 i ~Q1
out

1Q2
out

!1^:a1
†~ t !a2 :&

3ei ~Q1
out

2Q2
out

!2^:a1~ t !a2
† :&

3e2 i ~Q1
out

2Q2
out

!1^:a1~ t !†a2
† :&

3ei ~Q1
out

1Q2
out

!#, ~62!

where the dots in Eq.~62! mean time and normal ordering

^:a i~ t !a j
† :&5^a j

†a i~ t !&,

^:a i~ t !†a j :&5^a i~ t !†a j&,

^:a i~ t !a j :&5Q~2t !^a ja i~ t !&1Q~ t !^a i~ t !a j&,

^:a i~ t !†a j
† :&5Q~2t !^a i~ t†!a i

†&1Q~ t !^a j
†a i~ t !†&,

whereQ(t) is the step-function taking the values 1,1
2 or 0,

when t is larger than, equal to, or smaller than zero, resp
tively, and where for brevity we have introduced the notati

a i5dai5ai2^ai& ~ i 51 and 2!. ~63!

By taking the Fourier transforms of the symmetrized cor
lations~60!–~62!, we are eventually concerned with the ca
culation of response functions
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Rjk~v!5E
2`

1`

Q~t!^@b j~t!,bk#&e
2 ivtdt ~ j ,k51,2,3,4!.

~64!

and normally ordered correlation functions
ll
fo

eo
ie
m

s,

in

e
th
re

re
Sjk~v!5E
2`

`

^:b j~t!bk :&e2 ivtdt, ~ j ,k51,2,3,4!,

~65!

where we have introduced the vectorb j ~j 51 and 12! of
system operator fluctuations:
bW 5@a1 ,a1
† ,a2 ,a2

† ,dR2,dR1,dS2,dS1,dT2,dT1,dR3 ,dS3#T. ~66!
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In the linearized regime Eqs.~64! and ~65! can be easily
calculated by using the master equation. We carefu
checked that our method, relying on the master equation
malism and the quantum regression theorem@20#, gives re-
sults identical to the method based on linear-response th
in the frequency domain developed by Courty and Grang
@21#, and with the method using the input-output formalis
of Collett and Gardiner in the time domain@19,12#. The re-
sult for the response functions is

Rjk~v!5@~A1 ivI !21C0# jk , ~67!

where A is the (12312) drift matrix obtained linearizing
Eqs. ~31!–~37! @and the complex conjugates of Eqs.~31!–
~35!#, andC0 is the matrix of the equal-time commutator
i.e.,

Ci j
0 5^@b i ,b j u#&. ~68!

For the normally ordered correlation functions, one has,
stead

Sjk~v!5@~A1 ivI !21DN~AT2 ivI !21# jk , ~69!

whereDN is the normally ordered diffusion matrix that w
report for completeness in the Appendix. The results for
interesting correlations between input and output fields a

^dXs
indYm

out&v5 iAk1k2@R23e
i ~Q i

out
2Q2

in
!2R24e

i ~Q1
out

1Q2
in

!

2R13e
2 i ~Q1

out
1Q2

in
!1R14e

2 i ~Q1
out

2Q2
in

!#,

~70!

^dXs
indXs

out&v52cos~Q2
out2Q2

in!1k2@2R33e
2 i ~Q2

out
1Q2

in
!

1R44e
i ~Q

2out
1Q2

in
!1R34e

2 i ~Q2
out

2Q2
in

!

2R43e
i ~Q2

out
2Q2

in
!#. ~71!

The useful correlations involving only the output fields a
instead

^dXs
outdYm

out&v522iAk1k2@2S13e
2 i ~Q1

out
1Q2

out
!

1S23e
i ~Q1

out
2Q2

out
!2S14e

2 i ~Q1
out

2Q2
out

!

1S24e
i ~Q1

out
1Q2

out
!#, ~72!
y
r-

ry
r

-

e

^dXs
outdXs

out&v5112k2@S341S431S33e
2 i2Q2

out
1S44e

i2Q2
out

#,
~73!

^dYm
outdYm

out&v5112k1@S121S212S11e
2 i2Q1

out
2S22e

i2Q1
out

#.
~74!

IV. WORKING POINT FOR QND:
THEORETICAL ANALYSIS

In this section we analyze, from a theoretical viewpoi
the configuration necessary to perform the QND measu
ment which was used in the experiment with cold ato
described in Sec. V. Rather then repeating a general ana
of the scheme, which was done in Ref.@12#, we shall give
some details on how the scheme can be realized and
mized in a real experiment by taking explicitly into accou
the constraints imposed by the optical cavity and by
atomic energy-level configuration.

A. Ghost transition scheme

We consider a configuration proposed by Gheriet al.
@12#, using a very intense signal field and a much wea
meter field driving the transitions 3-2 and 2-1 of the thre
level atoms respectively. The strong signal has the dou
effect of ~1! dressing the atomic transition 3-2 to which it
applied, and~2! transferring most of the atomic population
the ‘‘bare’’ ground levelu1&. The coupling between the two
fields is achieved by tuning the meter in proximity of one
the two Rabi-split levels, originating from the bare excit
stateu2&, whose separation depends upon the intensity of
strong field. In particular, under the proper conditions, a v
efficient coupling between the signal intensity and the me
phase can be exploited for the QND measurement. Mo
over, due to the large difference in strength between
meter and the signal field, nearly all the atomic populat
remains in the ground levelu1& with the consequent advan
tage of keeping signal-absorption~and spontaneous emis
sion! low. To a first approximation the signal is applied to a
empty transition. This is why this configuration was call
‘‘ghost transition scheme’’ in Ref.@12#.

In Figs. 2 and 3~a!, we report two examples of the QND
performances of theL scheme in the ghost transition con
figuration with parameters which are typical of our expe
ment. The QND criteria are calculated, at a fixed frequen
of analysis, as a function of the meter atomic detuning wh
is scanned across the two Rabi-split levels, the meter be
exactly tuned on one of the two dressed levels forD15
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735 in both figures. Since the signal is taken at resona
with the atoms, the curves are symmetric with respec
D150. In these pictures, following the treatment in Re
@12#, we supposed both fields to be at resonance with
cavity, and we arbitrarily fixed the intracavity fields intens
ties I 1 andI 2 in a convenient range inspired from the expe
ment. The two figures differ in the value ofI 1 which is four
times larger in Fig. 3 than in Fig. 2. In both casesI 2@I 1 , as
required by the ghost transition scheme. A convenient cho
for the meter tuning is in proximity of the Rabi-split level

FIG. 2. ~a! QND coefficients forv50 as a function of the mete
atomic detuningD1 . ~b! QND coefficients forD1540.5 as a func-
tion of the frequency of analysisv/gw . Other parameters:I 152,
I 252450, D250, D1540.5, C15135, C2590, and k15k2

53gw .

FIG. 3. ~a! QND coefficients forv50.9gw as a function of the
meter atomic detuningD1 . ~b! QND coefficients forD1540.5 as a
function of the frequency of analysisv/gw . Other parameters:I 1

58, I 252450, D250, D1540.5, C15135, C2590, andk15k2

53gw .
ce
o
.
e

e

keeping, however, a certain detuning from the resona
with the Rabi levels in order to avoid strong meter abso
tion and consequent degradation of the ghost transi
scheme@12#.

In Figs. 2 and 3~b!, we show the frequency dependence
the QND criteria forD1540.5 in both cases. The frequenc
is normalized togw , which in our case is aboutgw/2p
53 MHz. The case represented in Fig. 3~b!, corresponding
to I 158, I 252450,D1540.5, andD250, seems more con
venient from the experimental point of view, displaying th
best QND performances~Cs.0.9, Cm.0.7, andVsum.0.2!
around 3 MHz, which is above low-frequency technic
noise.

B. Choice of the input fields and cavity parameters

By using our model, we wish to calculate the proper a
plitudes and cavity detunings of the input fields, such that
favorable case represented in Fig. 3~b! is actually recovered
in a realistic system.

We already know from Sec. III C that there is no com
plete freedom in choosing the cavity and the atomic det
ings, and that Eqs.~53! and ~54! should be fulfilled at the
same time in order to have both fields at resonance in
cavity. We have represented these two conditions graphic
in Fig. 4 as a function of the meter atomic detuningD1 .
Curve (A) represents Eq.~54! when I 1 , I 2 , andD2 are the
same as in Fig. 3~b! ~note that in the limit of strong signa
and weak meter this curve represents as well the meter
persion or phase shift!. Curve (B) represents Eq.~53!, with
the parameters of our experiment and for a given value of
cavity length. At the intersection points between the tw
curves, both relations are satisfied, and Eqs.~48!–~51! can be
used to calculate the exact values of the cavity detunings
input field amplitudes in order that the fields are set simu
neously at resonance in the cavity, with given values ofI 1 ,
I 2 , and D2 and with a value ofD1 corresponding to the
intersection point we have chosen. In particular, for the
tersection pointP corresponding toD1540.5, one recovers
exactly the situation of Fig. 3~b!.

The curves in Fig. 4 make it clear that, due to the co
straint relation~53!, the simultaneous resonance of the fiel
in the cavity can be achievedonly for some particular sets o
values of the atomic and cavity detunings. On the other ha
we have already pointed out that in many cases of inte
the constraint coming from Eq.~53! can be overcome by

FIG. 4. Curve (A) @double-resonance condition~54!# and curve
(B) @constraint relation~53! on the detunings#, as functions of the
meter atomic detuningD1 . Parameters:I 158, I 252450, D250,
C15135, C2590, k15k253.05gw , DA52276.6667, DC

5753.9822, andG57.49.
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FIG. 5. Steady-state intensities~top! and phases~bottom! for the meter~left! and signal~right! fields as functions of the cavity detuning
The intensitiesI 1 and I 2 are normalized to the input intensitiesuy1u2 and uy2u2, respectively. Parameters:y158.6526y2549.7193,D1

540.5,D250, C15135,C2590, k15k253.05gw , u01520.9095,u0250.1360, andG57.49.
u

no

a
as

le
ity
it
th
n
av

th
th

to
he

nd

as
ld

nal
al
the

o-

the
ces-
al

d in
nce
. In
at

ts

n-
D.

is
ith
in-
vity

h
n

adjusting the cavity length. In Fig. 4 these adjustments wo
correspond roughly to translate curve (B) thus ‘‘choosing’’
within some range the intersection point with curve (A). In a
real experiment, in fact, what can be set precisely is
directly the cavity length but theL-dependent quantity

G52DA

gw

k1
1DC , ~75!

accurately measured as the distance~in k1 units! between the
empty-cavity resonances of the two fields when those
tuned exactly on the atomic resonances. This can be e
seen by settingD15D250 in Eq. ~53!, which gives u1
2(k2 /k1)u252DA(gw /k1)1DC . In Fig. 4 ~for D250!
the quantityG is just the height of curve (B) at D150, equal
in this case toG57.5.

C. Mean fields across the cavity scan

In order to understand more clearly how the doub
resonance condition of the fields is achieved in the cav
and to compare the theory with the experimental results,
useful to plot the mean-field intensities of the signal and
meter when the cavity is scanned across the field resona
In the experiment, this is done by sweeping in time the c
ity length by a small amount6dL around the valueL0 for
which both fields are resonant in the cavity. To simulate
experimental procedure in our model, we decompose
cavity detuningsu i ~i 51 and 2! in Eqs. ~31! and ~32! as
sums of two termsu i5u0i1du i , whereu0i is a fixed initial
cavity detuning, anddu i is a change in the detuning due
the variation of the cavity length. It is easy to verify that t
du i must satisfy

du15
l2T2

l1T1
du2 ~76!

wherel i ~i 51 and 2! are the wavelengths of the modes, a
ld

t

re
ily

-
,

is
e
ce.
-

e
e

Ti are the mirror transmission coefficients.1 We plot an ex-
ample in Fig. 5, where the input parameters are chosen
described in Sec. IV B. On the left we show the meter fie
intensity ~upper curve! and phase~lower curve! across the
cavity scan, and the same is shown on the right for the sig
field. While the signal intensity curve displays the usu
Lorenzian shape centered about the cavity resonance,
meter intensity curve displays two peaks: the ‘‘proper’’ res
nance peak, shifted from its empty-cavity positiondu15
2u01 by the linear and nonlinear dispersive responses of
atoms to the meter field alone; and a second peak, of ne
sarily nonlinear origin, induced in the meter at the sign
resonance position fordu150. Intuitively, the extra reso-
nance in the meter field appears if the phase shift induce
the meter by the resonant signal equals the initial differe
between the empty-cavity resonances of the two fields
this very point of the cavity scan, where both fields are
resonance in the cavity~i.e., du15du250!, the configura-
tion in Fig. 3~b! is in fact realized.

In Fig. 6 we show the corresponding QND coefficien
calculated, at a fixed frequency of analysis (v/2p
52.7 MHz), along the cavity scan in the region of the i
duced peak where the fields are favorably coupled for QN
The best point of the scan is achieved at aboutdu150, prov-
ing that the double-resonance condition of the two fields
actually the most favorable for the QND measurement. W
this result in mind, parameters optimization, at least in pr
ciple, looks simpler: as a first step one adjusts the ca

1When the cavity length is varied by a small amountL5L0

1dL from the definitions~22! and ~21!, and vci5ni2pc/L with
( i 51,2) andni an integer, one hasu i5u0i1du i , with

du15
4p

T1

1

l1
dL, du25

4p

T2

1

l2
dL,

from which Eq.~76! follows. In the case of our experiment, wit
@(l22l1)/l1#.1025 and T15T2 , along the cavity scan we ca
approximatedu15du2 .
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length as described in Sec. IV B. Then one adjusts the fi
input powers, the laser frequencies, and the cavity detun
in order to recover the favorable double-resonance confi
ration. If the result is not satisfactory, the whole process
be iteratively repeated for another cavity length.

V. EXPERIMENTAL SETUP

A. Magneto-optical trap

The MOT is built in a large ultrahigh vacuum~UHV!
chamber, designed in order to set up the optical cavity
rectly around the cold atom cloud. The present setup u
87Rb atoms, with nuclear spinI 5 3

2 , whose ground state
5S1/2 and excited states 5P3/2 ~D2 line! and 5P1/2 ~D1 line!
are shown in Fig. 7 with their hyperfine sublevel structur
The trap is loaded by slowing down an atomic beam us
the standard chirped-frequency technique@22#. The atomic
beam part is separated from the UHV chamber contain
the trap by a differential pumping aperture, which allows
to obtain a UHV pressure of a few 10210 mbar in operating
conditions. The central part of the chamber is about 80
far from the oven; at this point the atomic beam has a dia
eter of about 7 mm, and it is offset from the trap center b
cm. The ‘‘slowing’’ diode is swept on the quasiclosedF
52 to F853 transition on theD2 line at 780 nm~see Fig.
7!, and a ‘‘repumping’’ diode is swept simultaneously on t
F51 to F852 transition. Both of them are free-runnin
single-mode laser diodes~Hitachi HL 7851G and Mitsubish
ML 64110N-01!. The powers sent onto the atoms are
~slowing! and 15 mW~repumping!, with a 15-mm-diameter
light beam whose part which could hit the trapped atom
cloud is carefully screened.

The atoms are trapped using a standard six-beamss1/s2

MOT configuration@23#. A quadrupole magnetic field with a
8-G/cm gradient on axis is provided by two anti-Helmho

FIG. 6. QND coefficients forv50.9gw as a function of the
cavity detuning in the region of the double-resonance posi
(du150). Parameters as in Fig. 5.

FIG. 7. Energy-level scheme of87Rb. The inset shows the rela
tive strength for coupling the signal and meter beams which h
linear orthogonal polarization.
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coils spaced by about 50 mm, with a current of 20 A. T
trapping lasers are two 100-mW laser diodes~SDL-5411-
H2!, injection locked to a master laser, which is a gratin
extended laser diode locked to an appropriate saturated
sorption line. An acousto-optical frequency shifter ensu
an adjustable detuning. During the experiment, the trapp
beams were detuned four natural linewidths to the red of
F52 to F853 transition of theD2 line of rubidium atoms.
The total power on the trap is typically three times 30 mW
with a beam diameter of 20 mm. As it is for the slowin
process, a repumping laser diode~Mitsubishi ML 64110N-
01! is locked on theF51 to F852 transition, and pumps
back into the trapping cycles the atoms which were lost
the F51 ground state. This beam is superimposed on
trapping beams along two of the three axes. Its central pa
screened thus forming a ‘‘dark spot’’ in the fields transve
profile @15#, which is imaged at the trap location. In this wa
the atoms in the trap cannot be repumped in the trapp
cycle and, on average, about 90% of the population of
cloud is in theF51 ground state. This point will be essenti
to allow simultaneous and continuous operation of the t
and QND experiments. The trap’s absorption in theF51
level is monitored using a weak probe beam. The trap fl
rescence, mostly induced by the residual percentage of at
in the F52 state that are excited by the trapping beams
measured by imaging it on a photodiode. The diameter of
trap is measured with a CCD camera, either in fluoresce
(F52) or in absorption (F51); both measurements yield
value close to 3.5-mm full width at half maximum. The e
timated values of the numberN of atoms and densityn in the
F51 dark state areN5109 andn5531010 atoms/cm3.

B. Doubly resonant cavity

In order to obtain large effects at the quantum noise lev
a vertical optical cavity is, set up inside the UHV chamb
around the cold-atom cloud. The cavity mirrors have a
mm radius of curvature. Thanks to screws and piezoelec
transducers that can be handled from outside the UHV ch
ber, the cavity length is adjustable from 64 to 68 mm. T
input-output cavity mirror has a 5% transmissivity. The u
per mirror has a very low transmissivity (331025), and it is
used to monitor the intracavity intensities while the cavity
scanned, thanks to two photomultipliers~see Fig. 8!.

The level scheme used for the QND effect is shown
Fig. 7. The signal and the meter beams are tuned on theD1
line at 795 nm~whereas, as we already stated, the trapp
and repumping beams are tuned on theD2 line at 780 nm!.
The signal is linearly polarized and tuned close to t
5S1/2F52 to 5P1/2F852 transition with a typical input
power of 15mW. The meter beam, on theF51 to F852
transition, is linearly polarized but orthogonally to the sign
and is tuned to the red with respect to the dressed levels
to the signal-atom coupling. Its typical input power is 25
nW. Both beams are emitted by two independent frequen
stabilized titanium-sapphire lasers. We carefully check
that they are shot noise limited both in intensity and phas
the frequency range of interest~2–20 MHz!, which corre-
sponds to our noise analysis frequency band since the
width of our cavity is 2k/2p518 MHz. The two beams are
carried onto the optical table by optical fibers which ens

n
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very good spatial mode quality and best mechanical stabi
They are mode matched to the optical cavity whose finess
125 with an efficiency above 99%. We also measured
optical transmission of the whole system, which is equa
90% whereas the on-resonance losses of the cavity are
ligibly small.

Note that the frequency difference between the signal
meter beam has to be close to the ground-state hype
splitting of 87Rb, which is 6.83 GHz. Since both beams al
have to be resonant on the cavity, this detuning has to
close to an integer number of the free spectral range~FSR! of
the cavity. This is indeed the case when the cavity lengt
66 mm, corresponding to a FSR of 2.27 GHz: the two bea
are then shifted by three FSR’s. As stated above, fine ad
ment of the FSR value are still possible while the experim
is running. We note also that the two standing-wave patte
from the signal and meter beams have to be in phase a
atom location, so that the atoms see the appropriate R
frequencies from each beam. This is achieved by placing
trapped atoms cloud at one third of the cavity length, i
close to 22 mm from one mirror and 44 mm from the oth
one.

Finally, the output signal is directly detected by a hi
efficiency photodiode~Centronix BPX-65, quantum effi
ciency 92%!, whereas the meter beam is detected by a ph
sensitive homodyne detection. The fringe visibility~homo-
dyne efficiency! obtained by mode matching the loc
oscillator onto the meter beam output is 96%.

VI. EXPERIMENTAL RESULTS
AND COMPARISON WITH THEORY

A. Mean-field configuration

The configuration we use to perform the QND measu
ment closely retraces what we have illustrated so far
theory. The strong signal is tuned slightly to the red of

FIG. 8. Schematic view of the experimental setup. The in
signal and meter beams are mode matched to an optical c
surrounding the trapped atoms. Output beams are separated
the input ones using Faraday rotators. The signal beam is dire
detected, while the meter beam undergoes a phase-sensitive h
dyne detection.
y.
is
e
o
eg-

d
ne

e

is
s

st-
t
s

he
bi
e

.,
r

e-

-
n

atomic resonance, while the weak meter it is tuned to the
with respect to the lower of the two dressed levels origin
ing from the excited stateu2& due to the atom-signal cou
pling. In the experimental situation and in the notations
our model, the typical input powers of 15mW for the signal
and of 250 nW for the meter correspond to normalized a
plitudes of the injected fields equal toy2556 andy157,
respectively, while the initial choice of the cavity length fo
which the two atomic frequencies are almost exactly th
FSR’s apart corresponds@see Eq.~75!# to G.0.

After the cavity and input powers have been fixed, t
atomic detunings are iteratively adjusted in order to optim
the QND coupling between the fields as follows. A we
intensity modulation at 5 MHz, about 20 dB above sh
noise level~SNL!, is applied on the signal beam. When th
two fields are coupled in the cavity, it is possible to read
same modulation in the phase of the meter beam by usin
phase-sensitive homodyne detection technique. The de
ings are adjusted by looking for the maximum transfer of
modulation from the signal onto the meter field and, sim
taneously, for the minimum degradation of the signal. This
done while always scanning the cavity about the signal re
nance, until a situation similar to the one depicted in Fig. 6
achieved, where the maximum transfer along the cavity s
occurs in correspondence to the signal resonance. This
ation is recovered in fact when both fields resonate at
same time in the cavity at the signal resonance position, a
Fig. 5.

In Fig. 9 we show an example of the mean-field config
ration across the cavity scan when the parameters were
timized for the QND experiment. The experimental curv
were taken, for the signal and meter intensities, both w
and without the trapping beams, thus ‘‘switching on’’ an
‘‘switching off’’ the nonlinearity. The solid line, superim
posed on the ‘‘noisy’’ experimental curves, shows thetheo-
retical curves obtained fory2542.120,y158.768, D252,
D1541.3, u0150.169, u01511.207, C25135, C1590, k1
5k259.034, andG522.01. The signal curves are show
upside down, and each curved is normalized to the co
sponding intensity at resonance in the empty cavity. In F
10 we again show the meter field in the presence of
atoms~intensity and phase across the cavity scan! to point
out that the ‘‘nonlinear’’ meter peak at the signal resonan
positiondu150 is actually an extra resonance for the me
field. This very point is the working point for the experimen
Here the cavity scan is stopped and the QND coefficients
measured.

B. QND coefficients

Typical experimental results for the QND coupling b
tween the fields in the case of the mean-field configuration
Fig. 9 are shown in Fig. 11. The lower trace (a) shows the
SNL, and the modulation of the output signal beam, tak
off cavity resonance without the atoms; the width of t
modulation peak is 100 kHz. Over this trace are also sho
as dots the SNL and modulation of the output signal bea
taken while the cavity is stopped at resonance in the prese
of the atoms~operating conditions!. There is clearly neither
attenuation nor a change in the noise of the signal beam.
measured nondemolition coefficientTs is therefore limited
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only by the passive optical transmission of the system, wh
relates the output signal without atoms to the input one,
Ts

(meas)50.90(20.5 dB). FromTs and from the lower trace
in Fig. 11, one obtains the input beam signal to noise ra
which is 23.8 dB. The upper trace (b) is the phase-dependen
noise and modulation of the output meter beam, taken
operating conditions while scanning the phase of the ho
dyne detection. The SNL of the meter beam was electro
cally set at the same level as the one of the signal beam.
upper envelope of the fringes gives the meter phase infor
tion, and yields the output meter signal-to-noise ratio, wh
is equal to 21.9 dB. The measurement transfer coefficien
thus21.9 dB, orTm

(meas)50.65. Finally, the conditional vari-
ance is obtained by recombining the output signal and m

FIG. 9. Normalized intensities of the meter and signal~up side
down! as functions of the cavity detuning. The curves were ta
both in presence and in absence of the atomic medium. The
continuous line is the theoretical curve, while the noisy lines
experimental curves. The little bump which appears on the m
curve without the atoms at the signal position is due to a sm
imperfection in the optics separating the two beams in the mon
ing channel. The parameters for the theoretical curves arey1

58.768, y2542.120, D1541.3, D252, C15135, C2590 ~C1

5C250 for the curves without atoms!, k15k253.01gw , u01

511.207,u0250.169, andG522.01.

FIG. 10. Meter intensity~top! and phase~bottom! as a function
of the cavity detuning, in presence of the atoms. The parameter
as in Fig. 9.
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photocurrents while scanning the phase of the homodyne
tection. We show the results in Fig. 12. In correspondenc
the right phase of the local oscillator picking up thephase
quadratureof the meter field, the recombined noise reach
a minimum value 3.5 dB below the SNL, which gives
conditional varianceVsum

(meas)50.45. Estimated uncertaintie
on Ts

(meas), Tm
(meas), andVsum

(meas)are60.05.
In order to compare the experimentally measured val

of the QND coefficients with the theory, it is necessary
take into account some small corrections due to opt
losses and nonunity efficiencies. The quantum efficiencies
the two channels are

hs5as
resbs

prop ~77!

for the signal beam, and

hm5am
resbm

propV2em
det ~78!

for the meter beam, whereas
res andam

res are the cavity losses
at resonance for the signal beam and the meter beam, res
tively; bs

prop and bm
prop are the optical losses on propagatio

for the signal beam and the meter beam, respectively,V is

n
in
e
er
ll
r-

re

FIG. 11. Measurement of the transfer coefficientTm . Curve
(a), normalized to the SNL, corresponds to the output signal, m
eled by a Gaussian peak~dash-dotted line!. Two curves are actually
displayed, and show no observable difference: one taken off r
nance without the atoms~line! and one taken on operating cond
tions ~dots!. Curve (b) is the outcoming meter, also taken on ope
ating conditions, and modulated by scanning the phase of
homodyne detection. The upper envelope is fitted by a Gaus
peak of same width as in curve (a). The signal-to-noise ratios ar
obtained as the differences~in dB! between the fitted peaks and th
flat backgrounds.

FIG. 12. Measurement of the conditional variance. The dot
line is the signal beam shot noise level at a noise analysis frequ
of 4.6 MHz. The full line is the noise from the recombined sign
and meter photocurrents, recorded as the phase of the homo
detection is scanned. The conditional variance appears as the
mum noise level of this curve.
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the fringe visibility of the homodyne detection, andem
det is the

meter detector quantum efficiency.
With our setup~Sec. V!, we have

as
res5am

res51, bs
prop5bm

prop50.90, V50.96, em
det50.92,

~79!

which implieshs50.9 andhm50.76. The QND coefficients
dueonly to the interaction with the nonlinear medium whic
are used in the theoretical model~where experimental imper
fections are not taken into account!, are then related to the
measured ones throughhs and hm . For the coefficientTs
one has simply

Ts
~meas!5hsTs . ~80!

To evaluateTm , one has to take into account the fact th
after the interaction, the meter has a strong phase n
^dỸm

out(v)2&. In the limit of high gains, one can show th
@14#

Tm
~meas!5BmTm where Bm5

hm^dỸm
out~v!2&

hm^dỸm
out~v!2&112hm

.

~81!

For ^dỸm
out(v)2&@1 @like in our case in whicĥ dỸm

out(v)2&
57.9#, one obtains

Bm512
12hm

hm^dỸm
out~v!2&

. ~82!

For the conditional variance, one can deduce

12Vsum
~meas!5Bmhs~12Vsum!. ~83!

By using Eqs.~80!–~83!, where we substitute the numeric
values~79! for our setup and the measured values for
QND coefficients, we can work out the experimental valu
for the QND coefficients, corrected for the optical loss
One obtainsTm50.67,Ts51, andVsum50.37, again with an
uncertainty estimated to be about60.05 on each coefficient

We can directly compare these results with the theoret
prediction, in Fig. 13, for the QND coefficients calculated
v/2p54.6 MHz along the cavity scan in the region of th
double-resonant point. At the best point of the scan one
Tm50.60,Ts50.97, andVsum50.36, which is in good agree
ment with the experiment. In Fig. 14 we finally show th
frequency dependence of the QND coefficients at the b

FIG. 13. QND coefficients forv51.533gw as a function of the
cavity detuning in the region of the double-resonance posi
(du150). The parameters are as in Fig. 9.
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point of the scan. As confirmed by the experiment, the qu
tum correlations display a significant frequency depende
within the frequency band selected by the cavity. The b
values are reached around 5 MHz, once more correspon
to the experimental observations.

C. Remarks

As we have shown, the agreement found between the
perimental results and the theoretical analysis perform
with a three-level model for the atoms is remarkable. T
model is able to reproduce and interpret the main experim
tal results which concern, on the one hand, the steady-s
curves of the field intensities across the cavity scan, and
the other hand, the quantum correlations between the fi
in the best configuration for QND identified as the point
the cavity scan where the two fields resonate simultaneou
Nevertheless it is needless to remark that the distance
tween the three-level model presented in this paper~Sec. III!
and the complex situation of a real experiment remains v
large. At least two major omissions in the model can
identified.

The first of these is that the restriction to a purely thre
level system does not take into account the actual multile
structure of the transitions used for the two-beam coupli
A schematic view of the involved Zeeman sublevels is re
resented in the inset of Fig. 7, where we also show the r
tive importance of the Clebsch-Gordan coefficients for
different transitions. The chance to represent this com
cated situation successfully as a simple lambda sch
comes from the fact that most of the contribution to t
coupling is given by the lambda schemes~the outermost in
the figure! which have the largest Clebsch-Gordon coe
cients, and it is indeed by considering these most contrib
ing transitions that we have chosen to set the ratioC1 /C2
51.5 in our model to fit the experimental curves.

The second major fault of the model is that, by describ
the fields in the cavity as plane waves, it neglects the Ga
ian transverse shape of the beams as well as their stand
wave longitudinal structure in the cavity. These spatial g
dients in the intensity profile of the waves, and especially
standing-wave structure in the cavity, give rise to optic
potentials whose depth can easily be of the same orde
magnitude of the small kinetic energy of the cold atoms, th
sizably affecting their external degrees of freedom. Prelim
nary experiments performed with our setup on one-pho
optical bistability showed with some evidence that optic
forces due to a strong standing wave in the cavity can h

n
FIG. 14. QND coefficients in the best point of the scan (du1

50.11) as a function of the frequency of analysis. The parame
are as in Fig. 9.
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macroscopic effects on the nonlinearity of the cold atom
changing the effective cooperativeness of the system
detuning and intensity-dependent way. The major pract
conclusion of this preliminary study was that it is preferab
to use red~positive! detuning for the fields, a condition in
which the effective cooperatively of the system can be
creased sizably with respect to the opposite case of
~negative! detuning. An attempt at an explanation for th
was made on the basis of a very simple model based on
dipole force that would attract cold atoms in the hig
intensity regions of the field for red detuning, and repu
them for blue detuning@24#. A more complex situation in-
volving two different light fields was analyzed theoretica
very recently@25#.

In this view, a too-strict correspondence between the
rameters introduced in the model~especially the cooperativ
ity parameters and the input fields amplitudes! and their ex-
perimental counterparts loses sense. Instead we are natu
led to consider the parameters of our theoretical mode
‘‘averages’’ over more complex phenomena that take pl
in the real experiment. The very fact that such effective
rameters can be defined, and used to obtain a very g
description of the results, is actually a good proof of t
robustness of the three-level model in our experimental c
figuration.

VII. CONCLUSIONS

We presented the results of a recent QND experim
performed with cold trapped rubidium atoms@10#, and their
interpretation on the basis of a theoretical model for thr
level atoms in a cavity. By studying in detail the steady-st
configurations allowed by the system and the quantum
havior of the fields, we showed by theory and experime
how a ghost transition configuration for performing QN
measurements with atomicx (3) nonlinearity can be success
fully implemented and optimized using cold atoms. The e
perimental results are the best obtained so far for a sin
back-action-evading measurement, and the agreement
tween theory and experiment is remarkable.
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APPENDIX

Here we report the elements of the diffusion matrixDN ,
expressed in terms of the normalized variables:

@x1 ,x1* ,x2 ,x2* ,v,v* ,w,w* ,z,z* ,m,n,#:

~DN!6,652
2gw

N
x1v* ,
,
a

al

-
e

he

e

a-

ally
s
e
-
od

n-

nt

-
e
e-
t,

-
le
be-

.
f
-
e

~DN!6,852
gw

N
~x1v* 1x2v* !,

~DN!6,1052
gw

N
x1z* ,

~DN!8,852
2gw

N
x2w* ,

~DN!8,105
gw

N
@x2z* 1x1~n2m!#,

~DN!8,115
gw

N
x1z,

~DN!8,1252
gw

N
x1z,

~DN!9,105
gw/2

N
@x1~v1v* !#1

g1

N
@1/3h~12m2n!#,

~DN!10,1152
gw/2

N
h~x1w1x2v* !,

~DN!10,1252
gw

N
~x1w1x2v* !,

~DN!11,115
2gw

N Fx1~v1v* !

1
x2

4
~w1w* !G

1
g1

N F4

3
~11h/4!~12m2n!G ,

~DN!11,125
gw

N
@x1~v1v* !

1x2~w1w* !#

1
g1

N F2

3
~11h!~12m2n!G ,

~DN!12,125
2gw

N Fx1

4
~v1v* !

1x2~w1w* !G
1

g1

N F4

3 S 1

4
1h D ~12m2n!G ,

plus the ones obtained by conjugation and index permuta
from the terms above~we recall thatDN is symmetrical!.
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