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Quantum-nondemolition measurements using cold trapped atoms:
Comparison between theory and experiment

A. Sinatra* J. F. Roch, K. Vigneron, Ph. Grelu, J.-Ph. Poizat, Kaige Waang P. Grangier
Institut d’Optique, Bae Postale 147, F-91403 Orsay Cedex, France
(Received 15 July 1997

In this paper we present a detailed theoretical analysis of a recent quantum-nondemolition experiment in
optics using cold atoms in a magneto-optical trap as a nonlinear medium. A signal beam and a meter beam
from two independent lasers are coupled withih-#ype three-level scheme in tiiEl line of 8Rb atoms. The
experimental results for the relevant quantum correlations of the fields, that represent up to now the best
achievements for a single back-action evading measurement, are found in a remarkably good agreement with
the theoretical predictions from a fully quantum model for three-level atoms in a doubly resonant cavity.
[S1050-294{@8)05203-2

PACS numbsg(s): 42.50.Lc, 32.80.Pj, 42.50.Dv, 42.65.Pc

[. INTRODUCTION spontaneous emission noise in quasiresonant nmddiz).
Nevertheless the last word about the exploitation pfY)
nonlinearities for quantum nondemolition experiments has
As summed up by the Heisenberg uncertainty relationnot yet been pronounced.
noise is introduced into a physical system when a quantum A theoretical analysis done for motionless atdrih2] pre-
measurement is performed on a given observable. The prirtlicted that it should be possible to obtain almost full control
ciple of quantum nondemolition(QND) measurements, oOf absorption and spontaneous emission processes, provided
which was first introduced theoretically by Braginsky andthat appropriate laser powers and detunings are used. On the
co-workers[1] and Thorneet al. [2], is to overcome this Other hand, the atomic media _uged so far, which are at_omic
measurement noise by repeated'y “hiding” |t in another Ob_beams or Vapor Cell_S,_ also exhibit Other typeS of ﬂuctuaﬂons,
servable which is not of interest. In the case where the noisg@ssociated with collisions and/or atomic moti@j. Atomic
is entirely kept into an observable which is conjugate withmotion causes fluctuations in the refractive index due to the

the measured quantity, the measurement is said to be bac%:—‘cwé“ti”g dnumber of atoms in (‘;he jnterz?fction fgion, and
Action evading(BAE). Though initially proposed for me- hus degra eis qgantug) np'iﬁ re Ll‘Ct'OIn? ects. An ogen w?y
chanical oscillators, these ideas were greatly developed, botf IMProve atomic media is then clearly to use a medium o

theoretically and experimentally, in the field of quantum op-COId trapped atomﬁl_s]; in these media, in fact, th_e time
tics. scale of the fluctuations in the number of interacting par-

In particular, quantum measurements performed oiicles, characterized by the transit time of the atoms across

propagating laser beams are very good candidates for impl he interaction region, is about three orders of magnitude

menting QND or BAE schemes. The basic idea of theséiotvnernthrﬁg ”r] ?lltortnlctib(re]arrzz ct>rr vap?]r \(;ells.hlnr otth?ir \t/ivorf?s,
schemes is to couple two light beams, usually called “sig—a0 umber tfiuctuations aps have charactenistic ire-

nal” and “meter” beams, via an optically nonlinear medium quencies that are typically in the kHz range, and do no affect

; the noise analysis that is performed in the MHz rafgge,
(see Ref[3] for theoretical proposalsThen, for an appro- . o
priately designed coupling, direct or homodyne detection mfor example, Sec. ) Moreover, despite the lower densities

the meter beam will perform a BAE measurement on theusuaIIy obtained in traps with respect to atomic beams or

signal beanf4—10. The nonlinear medium may display ei- vapor cglls, the elimination of the Doppler broadpning 01_‘ the
ther second-ordeny(?) or third-order §®)) optical nonlin- atomic lines allows one to control small atomic detunings

earities. The former have the important advantages of bein ceurately, and consequently to achieve large nonlinear ef-

well understood, and of adding very small excess noise to the cts. Tho_ugh these arguments have only a qualitative ch_ar-
aicter, it will be shown below that, when compared to atomic

interacting light beams; they were used in several SucceSSf'E')eam experiment$6,8,14, OND experiments performed

xperimen .g., Refl nd referen herginOn ; : ! e
experimentssee, e.g., e1[9;)a d elerences thergino with cold atoms do achieve both an improved efficiency and
the other hand, the lattery{®)) nonlinearities are usually . : .

. o . 2 an improved agreement with theoretical models.
accompanied by significant excess noise from the nonlinear

medium, which has been attributed to thermally excited Bril-
louin scattering in optical fibefgl, 7], or to absorption and/or

A. General features

B. Motivations of the work

In this article we give a detailed theoretical analysis of a

recent experimenitl0], where QND measurements are per-

*Permanent address: Istituto Nazionale Fisica della Materia, Diformed using rubidium atoms in a magneto-optical trap
partimento di Fisica dell'UniversitaVia Celoria 16, 20133 Milano, (MOT) as a nonlinear medium. Using /&type three-level

Italy. system in theD1 line of 8Rb, the observed performances
TPermanent address: Department of Physics, Beijing Normal Uniare quantitatively the best obtained so far for a single back-
versity, Beijing 100875, China. action-evading measurement. Moreover, the MOT and the
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QND effect are both running continuously at the same timeregarding the QND device as a black box with two input
and mutual perturbations have been avoided by using differehannels and two output channels represented by the incom-
ent optical transitions and a “dark-spot” techniqi25]. ing and outcoming signal and meter fields, we are interested
From the theoretical viewpoint, we extend the analysis donén describing how the incoming signal amplitude fluctuations
in [12] on QND measurements using three-level atoms in @X{'(t) or modulationsX."(t) are transferred to the two
ghost transition scheme, by including the case in which theutput channels of the device represented by the signal and
fields are not resonant in the cavity. How this scheme can bthe meter outputs. In an ideal QND device, the incoming
realized and optimized in a real experiment will be analyzediuctuations or modulations of the signal amplitude are left
in detail, by taking explicitly into account the constraints unchanged at the signal output, and they are at the same time
imposed by the optical cavity and by the atomic energy-leveperfectly reproduced by the meter output, allowing us to per-
configuration. form an ideally accurate and nondestructive measurement.
For real experiments three criteria were developed to quan-
C. Overview of the paper tify the efficiency of a system as a QND device, by taking

In Sec. Il we briefly introduce the criteria that were de- Inspiration from the possml_e applications of the nondestruc-
tive measurements as detailed below.

veloped to evaluate the efficiency of a real quantum non-
demolition device. The model is presented in Sec. Ill. In Sec. o .

IV we illustrate the configuration used to perform the QND B Input-output transfer coefficients and correlations
measurement, and show how we can choose the adjustable A first important application of the QND measurement,
parameters of our system in order to optimize the QND perfor example in the field of telecommunications, is related to
formances. In Sec. V we present the setup of our experimenghe possibility of reading an amount of information encoded
Finally, in Sec. VI we compare the results of the model within a beam without adding noise. Let us assume, for example,

the experimental results. that the experimenter gives a classical modulation to the sig-
nal amplitude at a certain frequency. We would like to
Il. CHARACTERIZATION OF A REAL QND “read” the modulation, which represents the information
MEASUREMENT carried by the signal field, without degrading it, thus leaving

the information available for other users along the same
transmission line.

Appropriate criteria for evaluating the efficiency of sys- By restricting ourselves to the linearized regime for quan-
tem as a “real” (i.e., nonidegl QND device were discussed tum fluctuations and coherent modulations, we can consider
in several paperfl6,17. It is now generally admitted that the QND device as a linear amplifier, and study how the
three necessary criteria for BAE operation of a device arenodulation and the noise are transferred from the signal in-
given by looking, on the one hand, at its input-output prop-put channel to the signal output and the meter output chan-
erties, and on the other hand at the quantum correlationsels. In the frequency space, by introducing the Fourier
established between the signal and meter outputs. transform (denoted with the tilde of the time dependent

More precisely, we are interested in the small time-quantities defined above, one has
dependent quantum fluctuatio®®(t) of the signal field

A. Introduction

amplitude quadratur@bout its steady-state value, defined by X' w)=gX' M), )
the relation: _ _
XM ) =gsoX M)+ B2 w) (6)
Xs(t)— <Xs>st: OXs(1), 1 s =S s
for the signal output ch I, and
and we are willing to “read out” those fluctuations in the or the signal oufput channet, an
meter fieldphase quadraturdluctuationssY¢(t) about the ’;,?nut w):gm';(/isn(w), 7

steady-state value which are defined in the same fashion:

Y (D) = (Y= 8Ym(b). ?) YW ) =gmoX () +BX w) 8

With a larger generality, the signal field amplitude may carryfor the meter output channel, whege andg,, represent the
out a smallcoherent modulation Xt), the amplitude and 9ains of the amplifier in the signal output and in the meter
the frequency of the modulation being much smaller than thé)UtPUt chan_nel, respectively, Wh'Ch are thd% sameaggr the sig-
mean amplitude and the optical frequency of the field, reNal input noise and the modulation, whBg™ and B rep-
spectively. The steady state of the system is thus “modulesent the ex}ra noises added by the amplifier in the tvyo
lated” about the stable time independent solutioty), channels, which could come for example from the atomic

(Ym)st, and one has noise or from the input meter noise and the signal phase
noise[ Y ¢'(w)] processed by the system. By assuming that
Xs(t) = (Xg)s= Xg (1) + 6X4(1), (3)  the fields injected in the QND device are in a coherent state,
we suppose thaB2% and B2Y are not correlated with
Y () = {Ym)st= Y (D) + Y (1), (4) SX L”(w); a more general treatment was given in Réf7].

The signal-to-noise rati6SNR) for the input channel of the
where, as in Eqg1) and(2), the terms which are kept on the signal field is then defined as the ratio between the intensity
right-hand side are small and will be treated linearly. Byof the small classical modulation given to the signal field
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amplitude quadrature at a certain frequency and the quantum e _

noise power in the same quadrature at the same frequency: (AB),= J:w e '“A(1)B)sydt  with
(XN (w))?
Mo ———, 9 A(t)B)sym=(A(t)B+BA(t))/2. 14
S <5X'sn(a))2> ( ) < ( ) >sym < ( ) ( )> ( )

and the same quantity can be defined for the two outpu?Ontrary to.the prgviou; ones, these qgantities cannot be
channels: measured directly in a single BAE experiment, because the

input fluctuations are not known in advance. However, it can
be shown that in the linearized regime for fluctuations and

S"(rou 2 vlou 2
out_ X' (@) out_ (i) small modulations, and for coherent input states of the fields

T (0X¢Mw)?) " (oY (w)?) into the QND device, one simply has
One can then define two quantitids and T,,, which Ce=Ts and Cp=Tm, (19
describe how the incoming SNP®) is transmitted to two ) .
output channels of the QND device: and the correlation coeff|C|en_ts_ can be thereforg calculated
and used as the transfer coefficients; we emphasize, however,
RO ROU that this is not generally true when the input beam has phase-
Tszﬁﬁ and Tm:ﬁﬁ' (11)  dependent excess noise, in which case some precautions are
s s required[17].
From Egs.(5)—(8), one has
_ C. Conditional variance
_ (0Xg(@)?) and A second application of the QND measurement concerns
S <5§ ‘S“(w)2)+<[5B§dd(w)/gS]2> the situation where we are interested directly in the quantum
fluctuations of the fields. If the intensity fluctuations of an
<5’>'(isn(w)2> incoming_beam are measured in a nondestructive way, the
=T = - (120  acquired information can be used, at the output of the QND
(SX (@)% +([ 5B )/gm]?) device, to correct the signal beam by reducing its fluctua-

. tions. The third QND criterion, relative to this application, is
The coefficientT evaluates to what extent the measure-giyen by the output conditional variance of the signal field,

ment is nondestructive, i.e., how the signal-to-noise ratio igyiven the result of a measurement on the meter field:
degraded after the measuremeni=1 for an ideal nonde-

structive measurement, while;=0 if the measurement is Vem= (XX (1= Cgpy, (16)
totally destructive. SimilarlyT,, evaluates the efficiency of

the measurement: a perfectly accurate measurement woulghereC.  is a normalized correlation between the meter and
correspond toT,=1, while T=0 if no information is  ihe signal outputs,

gained. For achieving QND performances, one requires that

T+ T,>1, which can be obtained only by using a phase- |(SX2UsYOUY |2
sensitive device. On the other hani,+T,,=1 is the per- Cam™ B oo St =5 (17)
formance of a simple beam splittEt7]. These transfer co- (8XUEXM) L(SYR'SY R,

efficients are very useful because they are directly accessible

in an experiment. The SNR values can indeed be visualizednd wherg/AB),, is defined as in Eq(14).

very easily on a spectrum analyzer, and it is then straightfor- For an ideal QND deviceCq,=1 andVg,=0, while in a

ward to measure the various SNR and to work out the transeal device one requires that the information gained by the

fer coefficients. measurement is sufficient to reduce the intensity fluctuation
From a formal point of view, it is also possible to consider of the initial beam under the shot-noise level, corresponding

the normalized correlations between the meter or signal outo V,<1.

put and the signal input quantum fluctuations, which were In a QND experiment, the signal noise reduction is usu-

first introduced by Hollanet al.in Ref.[16], and which we  ally not implemented, and the conditional varianég, is

will calculate theoretically. Precisely one defines measured electronically by subtracting the photocurrent of

. the meter readoWt " from the photocurrent of the outgoing
(XX ul® n

_ signal X2, with an appropriate gain or attenuation. More
S (SXTEXTY (SXUEXM precisely, the quantum fluctuations of these recombined cur-
. rents will be given by the spectral variance oK'
[(SXTSsYON |2 —gY%, whereg is an electronic gain or attenuation. In the

Cc (13

ideal case, the meter beam will reproduce the actual noise of
the output signal beam up to a multiplicative factor, and it
where(AB),, denotes the Fourier transform of the symme-Will be possible to correct exactly the signal noise by bring-
trized correlation function between the two operators ining the variance ofX3"'—gY®") to zero. In the general case,

brackets: the variance of X3"'-g Y% is

" (OXTXD) (Y SY
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is the decay rate constant of the atomic polarizations 1-2 and
3-2 in the radiative limit. We defind,; and A, the normal-
ized atomic detunings:

Wy — Wy Ws™ W3
A= , Ay= ; 24
3 ! Yw 2 Yw 24

1
please note that with definition®4) positive detunings are
FIG. 1. Energy-level scheme of the three-level atoms. red detunings @, om<wiase). The operators describing the
atoms are the polarization operatoksi,, o3, and o,3
V(s?r% = (SXUSXUY -+ |g|2( SYLSYO obeying the commutation rules
—2 Re(g(sX"5YOM ); (18) [0ij ,0w]= Sjkoii — dioy;, 1,j=1,2,3, (25

where thes;; are Kronecker deltas, and the population inver-

sions:r3=1/2(o,— 0q;) andsz=1/2(o,,— 033). The reso-

(19 nant cavity modes are described by the usual boson creation
and annihilation operatorar anda; (i=1 and 2, with

the minimum value of this quantity is obtained by choosing
g=(SXOYR LI (SYRISYEY,
for which choice one has in fact [a,al1=1, i j=1,2 (26)
i1 ' ' &
V(s?r%:qu, (200 The evolution of the system is governed by a master equa-
tion for the system density operatprwhich, in the interac-

with Vg, given by Eq.(16). In a real experimental situation, tion picture, has the form
the amplitude and phase of tgeactor are adjusted using an

attenuator and a delay line in order to minimize the photo- ap .
current difference. The minimum noise level obtained using o —LTi(LatLitleatLa)+ Aot Aglp,  (27)
this procedure gives the value of,.
where
Hl- MOBEL Lap=3{(20;~ w[Ra,p]+ (205~ w)[Ss,p1},
A. Equations

_ T t
. . . o = — + —
We consider a three-level atomic medium at rest, inside Lip=(we1—w1)[a181,p]F (0e2~ w2)[8282,p],

an optical ring cavity,L is the roundtrip length of the cavity, _ Tk Tk
occupied by the medium for a length Two laser fields of Lea=i{Kil (2181 =27 81),p]+ kol (6237~ 22 22).p1},
carrier frequencie®, and w, are injected in the cavity; the . fo— + fam o of
fields are supposed to be close to resonance with two atomicaP = {91l (a1R™ —a1R™), p]+ gzl (23S —2a,S").pl},
transitions frequencies, and wg, and with two cavity N

eigenfrequencies; andw,. The cavity is single ended for A.p= 7 n N14[gh n

each field,T; (i=1 and 2 being the transmissivity of the 2P nz’l y (Lo ol tlon.pozl)
coupling mirror. We introduce the decay constants of the

field litudes inside th I ity: Y2
ields amplitudes inside the emptipssless cavity + 2 ([0, L]+ [0, poL]),

cT, cT,
=1 k=a2, 21 _

“=gr0 KeTar @D \ip=rillap.all+[ag pall}+ sollazn . al] + [az,pall}.
wherec is the speed of light in vacuum, and the normalized!n this master équzition_we +intro_duced the collective atomic
empty cavity detunings: operatorsR. ,R°,S", S, T", T™, Rs, andS; constructed

from the single-atom operatorsy,, o,, 03, 053, 031,

We1— W1 Wer— Wy o5, 13, ands], respectively, as described in REE8], and

91=K—1, 92=K—2- (22)  obeying the same commutation rules. The telgp de-

scribes the free evolution of the atoms according to the

The atoms are described as sets of three energy levels diindle-atom Schrdinger Hamiltonian

posed in a lambda configuratigkig. 1). By y; and y, we
denote the decay rate constants of the atomic population

from the excited level2) towards levelg1) and|3), respec-  where we have conveniently defined the energy of léZel
tively, while y,,, defined as half of the total population de- sk , = (ws+ w,)/3 in order to get rid of constant factors.
cay rate from the upper level, Similarly, Lp describes the free evolution of the two cavity
modes and_.,;p accounts for the driving fields; and ¢,
injected in the cavity. The interaction terlry;p describes
the coupling between fields and atoms, which is written in

Ha= %ﬁ[r3(2a)r—ws)+83(2ws— o], (29)

:h+n

Yw 2 (23
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the dipole and rotating-wave approximatiogs,andg, be- ) 1
ing the coupling constants for the transitions 1-2 and 3-2, N=-v3 (1+2n)(m+n—-1)
respectively. The non-Hamiltonian terth,p accounts for
the decay of the atomic polarizations and population inver- Yo
sions(N is the number of atomswhile A ;p accounts for the + 271
decay of the intracavity fields due to the escape of photons
from the semireflecting cavity mirrors. For simplicity, here
we neglect the contributions due to collisions to the decay O{Nhere we have introduced the ratic=v,/y, and the coop-
the atomic polarization, restricting ourselves to the radiative_ .. Y2in b
limit. erativity parameters

By introducing the normalized classical variables, repre-
senting mean values of the atomic operators,

Y
X (xlv*+x’l*v)+y—vlv(xzw*+xgw) , (37

_ giN _gN -
V2 V2 1 Y 2kiye’ 22
=— — (R™ N~ A 1Yw K2Yw
v N(R Y, W N(S ), Z N(T )
2 2 proportional to the number of atoms that characterize the
m=-g (R3), n=- N (S3), (290  strength of the coupling between atoms and the two fields.

and the normalized Rabi frequencies proportional to the int-

racavity and input field&; and E}” (i=1 and 3, B. Steady state

Due to the high degree of symmetry of the equations for
_ﬁgi . _ . the lambda system, it is possible to calculate analytically the
xi=——E; with E;=(a;) (i=1,2), ) .
YW steady-state solution for the mean values of the atomic op-
erators(29) and the intracavity fields,; andx,, as a function

Vg 2 T of the input fields intensities and the remaining system pa-
yi=———=E" with E’=¢; —= (=12, (30 rameters. = . - i
Yu T 2 In the following we give the exact analytical solution for

the intracavity fields in the general case for the system pa-
the semiclassical equations for the normalized variables rea@meters. The steady-state mean values are calculated by
solving the system of nonlinear equations obtained by setting
X1=— k[ (1+i6,)X;—y;+2Cyv], (31) the right-hand sides of Eq§31)—(37) to zero.
By suitable redefinition of the phases of the polarization
variables and of the input fields, it is possible have the int-

Xe= ~ kel (1162} Yo 2C MW, (32 racavity fieldsx, and x, real numbers at steady state. In
' 14iA 33 particular we introduce the new variabl@s=ve '¢1, W
=— +i —X1M+ X5z s o e e Ve S .

v ’YW[( l)U 1 2 ]v ( ) :WG*I‘!’Z, Z:ze*|(<b17¢2), yi:yiefld)i’ andXi=|xi| (|:1

) _ and 2, whereg; (i=1 and 2 is the phase of th&h field at
W= = yu[(1+i1A2)W=Xn+Xx;2*], (34)  steady state. We shall use these variables in the following,
although we omit the “tildes” for typing convenience.

. (39

. 1
== 7W{'(A1_A2)Z_ > (aW* +x30) 1. Solution in the general case

As we said, it is possible to solve exactly the Bloch equa-
tions (33)—(37) at steady state, finding the analytical depen-
dence of the atomic variables on the fields variablesxs)
and system parameters. By substituting the solutions of the
, (36) Bloch equations in Eq931) and (32) at steady state, one

obtains the solutions for the fields, which read

- 1 Yw 1ok
m=-73 (n+2)(m+n—1)+z (Xgo* +x70)

Yw
+ 5— (XW* +X5w
271( 2 2 )

X2= |yl|2 (39)
1 [1+2C1b2|2H]2+[01+2C1b|2(77|1+Iz_bAl)H]z,
2

T [1+2C,bZ 5l 12+ [ 6,— 2C, b1, (7l + 1+ b AL 2’
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where we have defined

7:2%’ li=x3, 1,=x3, b=2(A;—A,), (41

and where

H:

3 +13+ 29+ 1)121,+(9+2)1 113+ 2bAy 7l 2

—2bA413+b l11,+b27(A2

3
5 (L4 7) (A= Ay)

-1
+1)|1+b2(A§+1)|2] . (42)

2. Phases of the input and output fields

Let us consider Eqs(31) and (32) at the steady state;
from Eq. (30), one has

EN=M4[(1+i6;)%x;+2Cqv], (43)
EN=M,[(1+i6,)%,+2C,w], (44)

where Miz(yw\/f).(Zfzgi)fl are proportionality con-
stants. The phase®? and @3 of the input fields are then
calculated a®|'=arctafiim(g")/ReE")] for (i=1 and 2.
By using Eqs.(30), (43), and(44), and the boundary condi-
tion for our single-port cavity,

EVYEN=TE (i=1,2, (45)

one has
EM=—My[(—1+i6,)%x,+2Cv], (46)
EM=—M,[(—1+i6,)x,+2C,w], (47)

from which the phases the phag@$" and® 5" of the output
fields are calculated in the same way.

3. Double-resonance condition

By using the steady-state solutiof89) and(40), we may

It should be noted that, in practice, it will not be trivial to
realize the double-resonance condition for a given cavity and
for a given atomic system. On the one hand, the choice of the
laser frequencies fixes the cavity and atomic detunings, and,
on the other hand, for the fields to be resonant, these quan-
tities have to linked by relation§48) and (49). This con-
straint will be discussed below.

C. Constraint on the detunings

We think it is worth considering in some detail how the
double-resonance conditiof®8)—(51) can be achieved in an
experiment; to this aim, we introduce the normalized detun-
ings

Wy ™ Wg Wc1™ We2

Ap= , Ag=———, 52
A= Ao (52)

representing the distance in frequency between the two lower
atomic levels and between the two cavity eigenfrequencies
nearly resonant with the input fields, respectively. We point
out that, due to its normalization,c does not depend on the
cavity length. By construction, a relation holds between the
cavity and the atomic detunings introduced so far:

K2 Y
91:(K_1> 0,=(A1—Ay—Ap) K_V1V+AC' (53

Equation (53) tells us that once the distance in frequency
between the two lasers is fixed, for example, by our choice of
the atomic detunings, the difference between the cavity de-
tunings is automatically fixed by the properties of the cavity
throughA¢, k¢, andk,. On the other hand, if we need both
fields at resonance in the cavity, the cavity detunings should
compensate for the phase shifts introduced by the atoms,
which impose that:

K2
01‘(71
whereF is a function of the indicated parameters which is
obtained easily from Eq48) and (49). Equations(53) and
(54) represent thus two independent requirements on the

quantity 6;—(k,/x4) 0, which should be fulfiled at the
same time. In particular, the right-hand sides of E§8) and

0,=F(C1,Cp,11,15,A1,45), (59

the cavity at the same time. This situation is particularlyang a given medium, the possible values of the atomic de-

favorable for the QND experimeiiL2], and it can be ex-

tunings and intracavity fields for which the double-resonance

pressed as a precise requirement on the cavity detunings aggndition can be achieved.
input fields amplitudes, given certain values of the intracav- \ye will return to this constraint on parameters in Sec. IV

ity fields intensitied ;, andl,, and atomic detuning&; and
A,. Such requirements read

61:_2C1b|2(7]|1+|2_bA1)H, (48)
02:2C2b|1(77|1+|2+b77A2)H, (49)
[yal= VI1(1+2C,021,1D), (50

|yal = VI2(1+2C,b% 1 ,IT). (51)

B by considering in particular the case of our experimental
setup and the mean fields configuration that we use to per-
form the QND measurements. Before this, however, we
would like to go back to Eq(53) and make some further
remarks. Equatiof53) is a relation between the cavity and
the atomic detunings that is automatically fulfilled in a real
experiment, suggesting that the four parameters of our model
should not be considered as independent. In order to evaluate
the significance of this relation in the different experimental
situations, we rewrite Eq53) as
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Ko 47 (1 1

b1 (Kl)gz_ Ty (Az N
where we used Eq$21), (24), and(52). Now several situa- BY Using the the input-output relation9]
tions are possible. Suppose first that the frequensieand ,
w, of the input fields are well separated on the optical- a’'+a"=\2xa (i=1 and 2, (59)
frequency scalgas, for example, in the experiments de-
scribed in Refs[6, 8]). Equation(55) shows that extremely whose classical counterpart is represented by (E§), and
small adjustments of the cavity length, on the order of assuming that the input fields are in a coherent state, one
1T (1N 1) — (1/\5) ]~ N, are in this case sufficient to adjust at obtains
will the difference 8, — («,/«4) 6, once the two laser fre-

guencies have already been fixed. In such conditions, atomic, i ou o + (O @in)
and cavity detunings can in fact be considered as indepen- XSO YR ) sym=1 V112 OO ai(1), @)

SEf=sae ¢+ sale?, with sa=a—(a) (i=12).
L+Ac, (55 (58)

dent parameters; and in particular the double-resonance con- —([a*(t) aT]>ei<(~)§“‘+(~)i{‘>

ditions (48) and (49) can be realized without any restriction w2

on the atomic detuning&; andA,. Let us now consider the ~([ay(t) a2]>e7i(2ut+®i2n)

opposite case in which the two frequencies and w, are ' _

very close one another. This could be, for example, the case +([al(t),ag])e‘i(GT”t—(""z”)], (60)

when the two ground levels of the lambda scheme are de-
generate Zeeman sublevels. df and w, are only a few

MHz apart, adjustments of the cavity length on the order of (SXg(t) X" gym= kO (D[ ([ aq(t), ap]ye 102"+ 02)
the meter (that is of course out of reach in an experiment out. -in

would be necessary in order to change the differefice +([ad(t),a}])e'©2 " 02)

— (ko1 k7) 8, by some units when the laser frequencies have . e% g,

already been fixed. In this case E§3) represents a serious +([az(1),az])e” 92 %
constraint that cannot be overcome by adjustments of the 1 402U o)

cavity length. In between the two limiting cases considered —([aa(t),az])e'®2 ~72]

above, there are situations in which, if on the one hand Eq. _ 5(t)coe(®‘2’”‘—®‘2”), 61)

(53) represents a real constraint, still some room is left for
small adjustments of the cavity detunings by significant
changes ofZ. A similar situation is encountered in the ex- <5X§“t(t)5Yﬁ1“t>sym= —2iVriko[ —Gag(t)as:)
periment with cold atoms that we consider in detail in this Cout out

paper(Sec. \}, where the two ground levels of the lambda xe 019201 (Lal(tay:)
scheme are hyperfine sublevels 6.83 GHz apart.

out,

. out
x gl(01 -3 )—<:a1(t)a£:>
i i : out out
D. Quantum noise analysis X e~ i1(07"-0; )+(:a1(t)TaZ )

In order to calculate the QND coefficients defined in Sec.  out —out

I, we are interested in the time-dependent correlation func- xg'(®1779277], (62
tions of the fields whose amplitude and phase fluctuate
around a steady-state mean value. We consider the case where the dots in E¢62) mean time and normal ordering:
which the the fluctuations are small with respect to the mean
values angq? linearized treatment of the fluctuations is pos- (:ai(t)ajT :)=<a}rai(t)>,
sible. LetE be a certain quadrature of theh field (i=1
and 2, relative to the reference pha
2 ' P .se Cai(t) ey =(ai(t) a;),

Ef=ae '?+ae'’. (56)

(tai(Daj)=0(—t)(aja;(t) +O(t){a(t)a;),

In the notations of Sec. I, and referring to the phases of the
input and output fields at steady state introduced in Sec. (.4, (t)Tal)=0(—t)(a;(t) ) +O(t)(ala;(t)T),
Il B, one has . ' .

_ on oot where®(t) is the step-function taking the values 3lor 0,
SX{=068,2 X{'=6E,? whent is larger than, equal to, or smaller than zero, respec-
tively, and where for brevity we have introduced the notation

— 0 (m/2) = 0" (w2)

oY= 05, SYp'= 08, (57) a=8a=a—(a) (i=1 and 2. (63

where bysZ{ we denote the time-dependent fluctuation of By taking the Fourier transforms of the symmetrized corre-
the operator={ around a steady-state point in the Heisen-lations (60)—(62), we are eventually concerned with the cal-
berg picture: culation of response functions
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+ o . [} X
Rjk(w):J’i‘ ®(T)<[ﬁj(7)1ﬁk]>eilw7d7- (jvk: 1127314- Sjk(w):J'i‘ <::Bj(7)ﬁk:>eilw7d7-v (j,k:1,2,3,4,
(64) (65)
where we have introduced the vecty (j=1 and 12 of
and normally ordered correlation functions system operator fluctuations:
|
B=[ai,al, as,a},6R™,6R",65,65",6T,6T,6R;,85,]". (66)

In the linearized regime Eq$64) and (65 can be easily out gyooul —i203" i205"
calculated by using the master equation. We carefully< OXSOX) 0 =1+ 2ol Saut Suat Soae™*%2 + Sy (27]3’)
checked that our method, relying on the master equation for-

malism and the quantum regression theof@@|, gives re- out esout _is@out i2@0Ut
sults identical to the method based on linear-response theon%ﬁYm YYo= 142k Siot Spr— Sy 01— S 1711'
in the frequency domain developed by Courty and Grangier (74)
[21], and with the method using the input-output formalism

of Collett and Gardiner in the time doméfit9,12. The re- IV. WORKING POINT FOR QND:

sult for the response functions is THEORETICAL ANALYSIS

In this section we analyze, from a theoretical viewpoint,
the configuration necessary to perform the QND measure-
ment which was used in the experiment with cold atoms
described in Sec. V. Rather then repeating a general analysis
of the scheme, which was done in REf2], we shall give

' some details on how the scheme can be realized and opti-
mized in a real experiment by taking explicitly into account
the constraints imposed by the optical cavity and by the

Ci(} =([Bi.Bi1)- (68) atomic energy-level configuration.

Rik(@)=[(A+iwl) *COy, (67)

where A is the (12x12) drift matrix obtained linearizing
Egs. (31)—(37) [and the complex conjugates of Eq81)—
(35)], and C° is the matrix of the equal-time commutators
ie.,

E&;&he normally ordered correlation functions, one has, in- A Ghost transition scheme
We consider a configuration proposed by Ghetial.

Sik(w)=[(A+iwl) 'Dy(AT=iwl) 1y, (69  [12], using a very intense signal field and a much weaker

meter field driving the transitions 3-2 and 2-1 of the three-

whereDy is the normally ordered diffusion matrix that we level atoms respectively. The strong signal has the double
report for completeness in the Appendix. The results for theeffect of (1) dressing the atomic transition 3-2 to which it is
interesting correlations between input and output fields are applied, and?2) transferring most of the atomic population to
the “bare” ground level|1). The coupling between the two

(SXIMEYY =i ,/Kle[RzﬁK@?“tf@Z‘)_ R24ei<‘f“t+®i2”) fields is achieved by tuning the meter in proximity of one of
_ , the two Rabi-split levels, originating from the bare excited
_ Rl3e—i(®$“t+®'2”>+ RMe—i(@i”t—@Z’)], state|2), whose separation depends upon the intensity of the

strong field. In particular, under the proper conditions, a very
(70 efficient coupling between the signal intensity and the meter
phase can be exploited for the QND measurement. More-

(SXNSXOUY — — cog @ @) + 1, — Ryge (0303 due to the large diff in strength between th
s OXS ) w 5 2 2 33€ over, due to the large difference in strength between the
. . meter and the signal field, nearly all the atomic population
IR i(® +®|n) 7i(®ou17®|n) X . X
448" 20ut 2+ Rz 2 T2 remains in the ground levél) with the consequent advan-
(O gin tage of keeping signal-absorptiqand spontaneous emis-
— Ry (92 792)], (71)  sion) low. To a first approximation the signal is applied to an

empty transition. This is why this configuration was called
The useful correlations involving only the output fields are“ghost transition scheme” in Ref.12].

instead In Figs. 2 and 8), we report two examples of the QND
performances of the\ scheme in the ghost transition con-
(SXOUSYOU — — 2 i xo[ — S~ (01 05" figuration with parameters which are typical of our experi-

ment. The QND criteria are calculated, at a fixed frequency

+5,0i(07"-03" of analysis, as a function of the meter atomic detuning which

ot out is scanned across the two Rabi-split levels, the meter being
+S,,e'(01 70277, (720 exactly tuned on one of the two dressed levels Agr=

_ Sl4e_ i (®fl)ut_ ®gut)
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FIG. 2. (a) QND coefficients forw =0 as a function of the meter
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atomic detuning\,. (b) QND coefficients forA;=40.5 as a func-
tion of the frequency of analysie/vy,,. Other parameterd; =2,
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FIG. 4. Curve Q) [double-resonance conditid64)] and curve
(B) [constraint relatior(53) on the detuningfs as functions of the
meter atomic detuning\;. Parametersl,=8, 1,=2450, A,=0,
C1:135, 02:90, K1:K2:3.05)/W, AA: 22766667, AC
=753.9822, andj=7.49.

keeping, however, a certain detuning from the resonance
with the Rabi levels in order to avoid strong meter absorp-
tion and consequent degradation of the ghost transition
schemd12].

In Figs. 2 and &), we show the frequency dependence of
the QND criteria forA;=40.5 in both cases. The frequency
is normalized toy,,, which in our case is abouy, /27
=3 MHz. The case represented in Figbg corresponding
tol,=8, 1,=2450,A,=40.5, andA,=0, seems more con-
venient from the experimental point of view, displaying the

+35 in both figures. Since the signal is taken at resonancbest QND performanceC,=0.9, C,,=0.7, andVg,=0.2)
with the atoms, the curves are symmetric with respect taround 3 MHz, which is above low-frequency technical
A;=0. In these pictures, following the treatment in Ref. noise.

[12], we supposed both fields to be at resonance with the

cavity, and we arbitrarily fixed the intracavity fields intensi-
tiesl, andl, in a convenient range inspired from the experi-

ment. The two figures differ in the value bf which is four
times larger in Fig. 3 than in Fig. 2. In both cadges 1, as

required by the ghost transition scheme. A convenient choic
for the meter tuning is in proximity of the Rabi-split levels,

0.8

0.6

0.4

0.2

(@)

60

Vijm

78
&/ Y

10

FIG. 3. (8) QND coefficients forw=0.9y,, as a function of the
meter atomic detuning ;. (b) QND coefficients forA;=40.5 as a
function of the frequency of analysis/y,, . Other parameterd;
=8, 1,=2450,A,=0, A;=40.5,C,;=135, C,=90, andx;=«,

=3vw-

B. Choice of the input fields and cavity parameters

By using our model, we wish to calculate the proper am-
plitudes and cavity detunings of the input fields, such that the
E\vorable case represented in Figb)3is actually recovered
In a realistic system.

We already know from Sec. Ill C that there is no com-
plete freedom in choosing the cavity and the atomic detun-
ings, and that Eqs(53) and (54) should be fulfilled at the
same time in order to have both fields at resonance in the
cavity. We have represented these two conditions graphically
in Fig. 4 as a function of the meter atomic detuniAg.
Curve (A) represents Eq54) whenl,, |,, andA, are the
same as in Fig. ®) (note that in the limit of strong signal
and weak meter this curve represents as well the meter dis-
persion or phase shjftCurve B) represents Eq53), with
the parameters of our experiment and for a given value of the
cavity length. At the intersection points between the two
curves, both relations are satisfied, and E48)—(51) can be
used to calculate the exact values of the cavity detunings and
input field amplitudes in order that the fields are set simulta-
neously at resonance in the cavity, with given value$,of
I,, and A, and with a value ofA; corresponding to the
intersection point we have chosen. In particular, for the in-
tersection pointP corresponding ta\;=40.5, one recovers
exactly the situation of Fig. ().

The curves in Fig. 4 make it clear that, due to the con-
straint relation(53), the simultaneous resonance of the fields
in the cavity can be achievamhly for some particular sets of
values of the atomic and cavity detunings. On the other hand,
we have already pointed out that in many cases of interest
the constraint coming from Eq53) can be overcome by
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FIG. 5. Steady-state intensitié®p) and phasegbottom) for the meter(left) and signalright) fields as functions of the cavity detuning.

The intensities!; and |, are normalized to the input intensitiég,

| 2

and|y,|?, respectively. Parameterg; =8.6526y,=49.7193,A,

=40.5,A,=0, C;=135,C,=90, k1= k,=3.05y,,, fp;=20.9095,6,,=0.1360, and;= 7.49.

adjusting the cavity length. In Fig. 4 these adjustments would; are the mirror transmission coefficieritsVe plot an ex-

correspond roughly to translate curvB)(thus “choosing”
within some range the intersection point with cur¥d (In a

ample in Fig. 5, where the input parameters are chosen as
described in Sec. IV B. On the left we show the meter field

real experiment, in fact, what can be set precisely is notntensity (upper curve and phaseglower curve across the

directly the cavity length but th€-dependent quantity

Yw
—Ap A
AKl C»

g= (75

accurately measured as the distafinec; units) between the

cavity scan, and the same is shown on the right for the signal
field. While the signal intensity curve displays the usual
Lorenzian shape centered about the cavity resonance, the
meter intensity curve displays two peaks: the “proper” reso-
nance peak, shifted from its empty-cavity positiod,=

— 60y, by the linear and nonlinear dispersive responses of the

empty-cavity resonances of the two fields when those ar@toms to the meter field alone; and a second peak, of neces-
tuned exactly on the atomic resonances. This can be easigarily nonlinear origin, induced in the meter at the signal

seen by settingA\;=A,=0 in Eg. (53), which gives 6,
_(K2/K1)02:_AA(’)/W/Kl)"f‘Ac. In F|g 4 (for A2=0)
the quantitygG is just the height of curveR) atA;=0, equal
in this case t@=7.5.

C. Mean fields across the cavity scan

In order to understand more clearly how the double-

resonance position fo66,=0. Intuitively, the extra reso-
nance in the meter field appears if the phase shift induced in
the meter by the resonant signal equals the initial difference
between the empty-cavity resonances of the two fields. In
this very point of the cavity scan, where both fields are at
resonance in the cavitfi.e., 56,= §6,=0), the configura-
tion in Fig. 3b) is in fact realized.
In Fig. 6 we show the corresponding QND coefficients

resonance condition of the fields is achieved in the cavitycalculated, at a fixed frequency of analysisv/Zm
and to compare the theory with the experimental results, it is=2.7 MHz), along the cavity scan in the region of the in-
useful to plot the mean-field intensities of the signal and theduced peak where the fields are favorably coupled for QND.
meter when the cavity is scanned across the field resonanc€he best point of the scan is achieved at ab®ft=0, prov-

In the experiment, this is done by sweeping in time the caving that the double-resonance condition of the two fields is

ity length by a small amount §£ around the value&, for

actually the most favorable for the QND measurement. With

which both fields are resonant in the cavity. To simulate thehis result in mind, parameters optimization, at least in prin-
experimental procedure in our model, we decompose theiple, looks simpler: as a first step one adjusts the cavity

cavity detuningsé; (i=1 and 2 in Egs.(31) and (32) as
sums of two term®);= 6y + 66, , wheredy; is a fixed initial

cavity detuning, and#6; is a change in the detuning due to

When the cavity length is varied by a small amout £

the variation of the cavity length. It is easy to verify that the | 5/ from the definitions(22) and (21), and wg;=n,27c/L with

66; must satisfy

AT,
ATy

(i=1,2) andn; an integer, one hag,= 6y + 56, , with
4 1 a1
EEVE N P
from which Eq.(76) follows. In the case of our experiment, with
[(A;,—A)/\;]=10"% and T,;=T,, along the cavity scan we can

50,= 5L,

where); (i=1 and 2 are the wavelengths of the modes, andapproximatesg, = 66,.
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coils spaced by about 50 mm, with a current of 20 A. The
trapping lasers are two 100-mW laser diod&DL-5411-

H2), injection locked to a master laser, which is a grating-
extended laser diode locked to an appropriate saturated ab-
sorption line. An acousto-optical frequency shifter ensures
an adjustable detuning. During the experiment, the trapping
beams were detuned four natural linewidths to the red of the

R T R TR a0, b9 F=2 to F’'=3 transition of theD2 line of rubidium atoms.
The total power on the trap is typically three times 30 mW,
] A : *  with a beam diameter of 20 mm. As it is for the slowing
cavity detuning in the region of the double-resonance posmorbrocessy a repumping laser diotitsubishi ML 64110N-

FIG. 6. QND coefficients forw=0.9y,, as a function of the

(96,=0). Parameters as in Fig. 5. 01) is locked on theF=1 to F' =2 transition, and pumps

length as described in Sec. IV B. Then one adjusts the field ack into the trapping cyclgs the atpms Whi,Ch were lost in
input powers, the laser frequencies, and the cavity detuningn® F =1 ground state. This beam is superimposed on the
in order to recover the favorable double-resonance configt¥@PPing beams along two of the three axes. Its central part is
ration. If the result is not satisfactory, the whole process cafcreened thus forming a “dark spot™ in the fields transverse

the atoms in the trap cannot be repumped in the trapping

cycle and, on average, about 90% of the population of the
cloud is in theF =1 ground state. This point will be essential
A. Magneto-optical trap to allow simultaneous and continuous operation of the trap

The MOT is built in a large ultrahigh vacuufUHV) and QND experiments. The trap’s absorption in the 1

chamber, designed in order to set up the optical cavity dijevel is monitored using a weak probe beam. The trap fluo-

rectly around the cold atom cloud. The present setup usd&SCENce, mostly induced by the residual percentage of atoms

87Rb atoms, with nuclear spih=2, whose ground state in the F=2 state that are excited by the trapping beams, is

5S,,, and excited states,, (D2 line) and 5y, (D1 line) measured by imaging it on a photodiode. The diameter of the

are shown in Fig. 7 with their hyperfine sublevel structuresFap 1 measured W't_h a CCD camera, either in fluor(_escence
F=2) or in absorption E=1); both measurements yield a

The t is | lowi tomi i / .
€ trap is loaded by slowing down an atomic beam usin alue close to 3.5-mm full width at half maximum. The es-

the standard chirped-frequency techniq@g]. The atomic . dval f1h baf of d densit in th
beam part is separated from the UHV chamber containindMated values of the numbér of atoms and density in the
=1 dark state arél=10° andn=5x 10' atoms/cm.

the trap by a differential pumping aperture, which allows us
to obtain a UHV pressure of a few 18 mbar in operating .
conditions. The central part of the chamber is about 80 cm B. Doubly resonant cavity

far from the oven; at this point the atomic beam has a diam- |n order to obtain large effects at the quantum noise level,
eter of about 7 mm, and it is offset from the trap center by 13 vertical optical cavity is, set up inside the UHV chamber
cm. The “slowing” diode is swept on the quasiclos€d  around the cold-atom cloud. The cavity mirrors have a 60
=2 to F’'=3 transition on theD2 line at 780 nm(see Fig. mm radius of curvature. Thanks to screws and piezoelectric
7), and a “repumping” diode is swept simultaneously on thetransducers that can be handled from outside the UHV cham-
F=1 to F'=2 transition. Both of them are free-running per, the cavity length is adjustable from 64 to 68 mm. The
single-mode laser diodésiitachi HL 7851G and Mitsubishi  input-output cavity mirror has a 5% transmissivity. The up-
ML 64110N-01. The powers sent onto the atoms are 30per mirror has a very low transmissivity 3.0 °), and it is
(slowing and 15 mW(repumping, with a 15-mm-diameter ysed to monitor the intracavity intensities while the cavity is
light beam whose part which could hit the trapped atomicscanned, thanks to two photomultipligeee Fig. 8.
cloud is carefully screened. The level scheme used for the QND effect is shown in
The atoms are trapped using a standard six-beaie~  Fig. 7. The signal and the meter beams are tuned othe

MOT configuration[23]. A quadrupole magnetic field with a |ine at 795 nm(whereas, as we already stated, the trapping
8-G/cm gradient on axis is provided by two anti-Helmholtz and repumping beams are tuned on En2 line at 780 nm

The signal is linearly polarized and tuned close to the

V. EXPERIMENTAL SETUP

F=3 ) 5S,,F=2 to 5P,,F'=2 transition with a typical input
1:'=2A1 pr=o Signal and _ r_
F=l1 =2 neter beams power of 1_5,4W. The meﬁer beam, on the=1 to F —2
Trapping §n=d0 F=1 (DI, 795 nm) tran§|t|on, is linearly polar_lzed but orthogonally to the signal,
repumping e i and is tuned to the red with respect to the dressed levels due
(D2, 780 nm) F=2 =% =% 7% 75 to the signal-atom coupling. Its typical input power is 250
F=2 Signal }&21 A 12%1 nW. Both beams are emitted by two independent frequency-
. F=2Meter631 3STZ T1e stabilized titanium-sapphire lasers. We carefully checked
B F=1 AVAYARAVA that they are shot noise limited both in intensity and phase in

the frequency range of intere€—20 MH2, which corre-
FIG. 7. Energy-level scheme 6fRb. The inset shows the rela- Sponds to our noise analysis frequency band since the line-

tive strength for coupling the signal and meter beams which havavidth of our cavity is 2¢/27w=18 MHz. The two beams are

linear orthogonal polarization. carried onto the optical table by optical fibers which ensure
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o atomic resonance, while the weak meter it is tuned to the red
Q pM: with respect to the lower of the two dressed levels originat-
ing from the excited stat¢?) due to the atom-signal cou-
R Homodyne Detection pling. In the experimental situation and in the notations of
| ! our model, the typical input powers of }BN for the signal
: [raP\ ! o and of 250 nW for the meter correspond to normalized am-
! } ! plitudes of the injected fields equal §b,=56 andy,;=7,
| ! respectively, while the initial choice of the cavity length for
" UBY which the two atomic frequencies are almost exactly three

FSR’s apart correspondisee Eq(75)] to G=0.
After the cavity and input powers have been fixed, the

Polarizer
cube

Meter

i Input atomic detunings are iteratively adjusted in order to optimize
2 Optical the QND coupling between the fields as follows. A weak

M2 n2 intensity modulation at 5 MHz, about 20 dB above shot-
| [ Faraday Slgnal ; ) - )
I _rotator N 0P~ Input noise level(SNL), is applied on the signal beam. When the
Signal two fields are coupled in the cavity, it is possible to read the
Output . . .
same modulation in the phase of the meter beam by using a

FIG. 8. Schematic view of the experimental setup. The input_ph""se'senSitiVe homodyne detection technique. The detun-

signal and meter beams are mode matched to an optical cavi§9S are adjusted by looking for the maximum transfer of the
surrounding the trapped atoms. Output beams are separated frdmodulation from the signal onto the meter field and, simul-
the input ones using Faraday rotators. The signal beam is directifgneously, for the minimum degradation of the signal. This is
detected, while the meter beam undergoes a phase-sensitive honfone while always scanning the cavity about the signal reso-
dyne detection. nance, until a situation similar to the one depicted in Fig. 6 is
achieved, where the maximum transfer along the cavity scan

. : . ...occurs in correspondence to the signal resonance. This situ-
very good spatial mode quality and best mechanical Stabllltyation is recovered in fact when both fields resonate at the

They are mode matched to the optical cavity whose finesse - . . . - )
125 with an efficiency above 99%. We also measured thgzis\gm%tlme in the cavity at the signal resonance position, as in

optical transmission of the whole system, which is equal to In Fig. 9 we show an example of the mean-field configu-

90% whereas the on-resonance losses of the cavity are nege; . -ross the cavity scan when the parameters were op-

ligibly small. - : :
. . timized for the QND experiment. The experimental curves
Note that the frequency difference between the signal an ere taken, for the signal and meter intensities, both with

meter beam has to be close to the ground-state hyperfin&qd without the trapping beams. thus “switching on” and
splitting of 8’Rb, which is 6.83 GHz. Since both beams also“switching off" the %%nlgi]nearity. The solid line, guperim-

have to be resonant on the cavity, this detuning has to bSosed on the “noisy” experimental curves, shows theo-

close to an integer number of the free spectral raf@R of . ; _ _ _
the cavity. This is indeed the case when the cavity length iretﬁlelc:l; rvees:oobtlaégeg fiylzl ;0271(2:03135 268: éé K2
66 mm, corresponding to a FSR of 2.27 GHz: the two beams * ;.01 ¥ 272 VoL - =71 =2 et

. X ! o k2=9.034, andg= —2.01. The signal curves are shown
are then shifted by three FSR’s. As stated above, fine adjust nside down, and each curved is normalized to the corre-

ment OT thevl\:/SR vtalu? artehsillihp0f5|bliwfg!e tt]e expen{Pen ponding intensity at resonance in the empty cavity. In Fig.
IS running. Yve note aiso that the two standing-wave pattérns, , o again show the meter field in the presence of the
from the S|_gnal and meter beams have to be in pha}se at t%%ms(intensity and phase across the cavity 3canpoint
zfﬂér?giaetéof%;oeg?‘t t}ggmatf)rmz isse:C:]?gvsg%rOp:gﬁ] Rt{; Ut that the “nonlinear” meter peak at the signal resonance
q ' y P 9 Sosition 86,=0 is actually an extra resonance for the meter

trapped atoms cloud at one third of the cavity length, € field. This very point is the working point for the experiment.
close to 22 mm from one mirror and 44 mm from the other . ; L
Here the cavity scan is stopped and the QND coefficients are

one.
Finally, the output signal is directly detected by a high measured.

efficiency photodiode(Centronix BPX-65, quantum effi-

ciency 92%, whereas the meter beam is detected by a phase- B. QND coefficients

sensitive homodyne detection. The fringe visibilitfyomo- Typical experimental results for the QND coupling be-
dyne efficiency obtained by mode matching the local tween the fields in the case of the mean-field configuration in
oscillator onto the meter beam output is 96%. Fig. 9 are shown in Fig. 11. The lower traca)(shows the
SNL, and the modulation of the output signal beam, taken
VI. EXPERIMENTAL RESULTS off cavity resonance without the atoms; the width of the
AND COMPARISON WITH THEORY modulation peak is 100 kHz. Over this trace are also shown

as dots the SNL and modulation of the output signal beam,
taken while the cavity is stopped at resonance in the presence
The configuration we use to perform the QND measureof the atomsoperating conditions There is clearly neither
ment closely retraces what we have illustrated so far imttenuation nor a change in the noise of the signal beam. The
theory. The strong signal is tuned slightly to the red of itsmeasured nondemolition coefficiemt is therefore limited

A. Mean-field configuration
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with atoms
g T 20 |

(b)
20 L

112
meter | ]

noise power (dB)

los

0.8[
O 4 L
signal @)

[ ] 46 48 50 52 54
[ ] frequency (MHz)

-5 -10 -5 0 5 66, FIG. 11. Measurement of the transfer coefficidnt. Curve
without atoms (a), normalized to the SNL, corresponds to the output signal, mod-
‘ 7 eled by a Gaussian pe#éttash-dotted linge Two curves are actually
// displayed, and show no observable difference: one taken off reso-
] nance without the atomdine) and one taken on operating condi-
/ 1 tions (dotg. Curve () is the outcoming meter, also taken on oper-
08 ating conditions, and modulated by scanning the phase of the
/y | danal homodyne detection. The upper envelope is fitted by a Gaussian
1 peak of same width as in curv@). The signal-to-noise ratios are
M obtained as the differencéim dB) between the fitted peaks and the
'“M“’* flat backgrounds.
—-15  -10 =5 0 5 56

0.4

=]

meter |

_|

0.8/

0.4

FIG. 9. Normalized intensities of the meter and sighed side pho_tocurrents while scanning_ thg phase of the homodyne de-
down) as functions of the cavity detuning. The curves were takentecnqn' We show the results in F_'g' 12. I_n (_;orrespondence to
both in presence and in absence of the atomic medium. The thif® right phase of the local oscillator picking up thlease
continuous line is the theoretical curve, while the noisy lines argduadratureof the meter field, the recombined noise reaches
experimental curves. The little bump which appears on the mete® Minimum value 3.5 dB below the SNL, which gives a
curve without the atoms at the signal position is due to a smalconditional variancev{®®=0.45. Estimated uncertainties
imperfection in the optics separating the two beams in the monitorgn T{meas) (meas) andvg‘”,fas) are +0.05.
ing channel. The parameters for the theoretical curvesyare In order to compare the experimentally measured values
=8.768, y,=42.120, A;=41.3, A,=2, C;=135, C,=90 (C;  of the QND coefficients with the theory, it is necessary to
=C,=0 for the curves without atoms x;=x,=3.0ly,, o1  take into account some small corrections due to optical
=11.207,6,,=0.169, andj= —2.01. losses and nonunity efficiencies. The quantum efficiencies on

the two channels are
only by the passive optical transmission of the system, which res0r0
relates the output signal without atoms to the input one, i.e., ns=ag Be T (77
T{meask. 9.90(— 0.5 dB). FromT, and from the lower trace
in Fig. 11, one obtains the input beam signal to noise ratiofor the signal beam, and
which is 23.8 dB. The upper tracb) is the phase-dependent
noise and modulation of the output meter beam, taken in Nm= aUISSBPIOP2 et (79)
operating conditions while scanning the phase of the homo-
dyne detection. The SNL of the meter beam was electroni- .
cglly set at the same level as the one of the signal beam. TH r the meter beam, V\{her(eges and ar,*”are the cavity losses
upper envelope of the fringes gives the meter phase informai"_lt resongrg;:e for tpgp&gnal beam_ and the meter beam, respec-
tion, and yields the output meter signal-to-noise ratio, whichiVely; Bs ~ and B, are the optical losses on propagation
is equal to 21.9 dB. The measurement transfer coefficient if" the signal beam and the meter beam, respectivelis
thus—1.9 dB, orT{M*=0.65. Finally, the conditional vari-

ance is obtained by recombining the output signal and meter I 1

g 4
5 M N A
"gzux‘rwlxw Ml’
& 0 |
@ 1 f
2 (Al B ) iR
R — —

4 1

0.0 0.5 1.0 1.5 2.0

sweep time (s)

FIG. 12. Measurement of the conditional variance. The dotted
line is the signal beam shot noise level at a noise analysis frequency
of 4.6 MHz. The full line is the noise from the recombined signal

FIG. 10. Meter intensitytop) and phasébottom as a function and meter photocurrents, recorded as the phase of the homodyne
of the cavity detuning, in presence of the atoms. The parameters adetection is scanned. The conditional variance appears as the mini-
as in Fig. 9. mum noise level of this curve.
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FIG. 13. QND coefficients fow=1.533y,, as a function of the FIG. 14. QND coefficients in the best point of the scatd{
cavity detuning in the region of the double-resonance position=0.11) as a function of the frequency of analysis. The parameters
(66,=0). The parameters are as in Fig. 9. are as in Fig. 9.

the fringe visibility of the homodyne detection, aaﬂftis the
meter detector quantum efficiency.
With our setup(Sec. Vj, we have

point of the scan. As confirmed by the experiment, the quan-
tum correlations display a significant frequency dependence
within the frequency band selected by the cavity. The best
values are reached around 5 MHz, once more corresponding

_ res_ _ prop_ _ det_
ag*=ap=1, BYP=pRP=0.90, V=096, ey=0.92, g the experimental observations.

(79

which impliesns=0.9 andn,,,=0.76. The QND coefficients, C. Remarks
dueonly to the interaction with the nonlinear medium which
are used in the theoretical modelthere experimental imper-

fections are not taken into accolnare then related to the

measured ones throughs and »,,. For the coefficientT

one has simply

As we have shown, the agreement found between the ex-
perimental results and the theoretical analysis performed
with a three-level model for the atoms is remarkable. The
model is able to reproduce and interpret the main experimen-
tal results which concern, on the one hand, the steady-state
(80) curves of the field intensities across the cavity scan, ano_l, on

the other hand, the quantum correlations between the fields

To evaluateT,,, one has to take into account the fact that,i” the best configuration for QND identified as the point of

after the interaction, the meter has a strong phase noidB€ cavity scan where the two fields resonate simultaneously.
(5Y%"()2). In the limit of high gains, one can show that Nevertheless it is needless to remark that the distance be-

[14] tween the three-level model presented in this p&fec. Il))
and the complex situation of a real experiment remains very

T(Smeas) =7sTs.

77 (570‘“((0)2) large. At least two major omissions in the model can be
TMeas_pg T where Bj,= j‘out m2 _ identified. _ o
7l SYm () ) +1— 75y, The first of these is that the restriction to a purely three-

(81)

For (8Y%%(w)2)>1 [like in our case in which 8Y%(w)?)
=7.9], one obtains

B _1_l (82
T (oY@

For the conditional variance, one can deduce

level system does not take into account the actual multilevel
structure of the transitions used for the two-beam coupling.
A schematic view of the involved Zeeman sublevels is rep-
resented in the inset of Fig. 7, where we also show the rela-
tive importance of the Clebsch-Gordan coefficients for the
different transitions. The chance to represent this compli-
cated situation successfully as a simple lambda scheme
comes from the fact that most of the contribution to the
coupling is given by the lambda schem@ise outermost in

the figurg which have the largest Clebsch-Gordon coeffi-
cients, and it is indeed by considering these most contribut-
ing transitions that we have chosen to set the ra&tdC,
By using Egs(80)—(83), where we substitute the numerical =1.5 in our model to fit the experimental curves.
values(79) for our setup and the measured values for the The second major fault of the model is that, by describing
QND coefficients, we can work out the experimental valueghe fields in the cavity as plane waves, it neglects the Gauss-
for the QND coefficients, corrected for the optical losses.ian transverse shape of the beams as well as their standing-
One obtainsl,=0.67,Ts=1, andV,=0.37, again with an  wave longitudinal structure in the cavity. These spatial gra-
uncertainty estimated to be abatiD.05 on each coefficient. dients in the intensity profile of the waves, and especially the
We can directly compare these results with the theoreticadtanding-wave structure in the cavity, give rise to optical
prediction, in Fig. 13, for the QND coefficients calculated atpotentials whose depth can easily be of the same order of
wl/27=4.6 MHz along the cavity scan in the region of the magnitude of the small kinetic energy of the cold atoms, thus
double-resonant point. At the best point of the scan one hasizably affecting their external degrees of freedom. Prelimi-
Tm=0.60,Ts=0.97, andVg,= 0.36, which is in good agree- nary experiments performed with our setup on one-photon
ment with the experiment. In Fig. 14 we finally show the optical bistability showed with some evidence that optical
frequency dependence of the QND coefficients at the bedbrces due to a strong standing wave in the cavity can have

1= V{e® =B 7s(1— Vym). (83)
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macroscopic effects on the nonlinearity of the cold atoms, Yo
changing the effective cooperativeness of the system in a (DN)G,SZ_W (Xp@* +x0%),
detuning and intensity-dependent way. The major practical
conclusion of this preliminary study was that it is preferable
to use red(positive) detuning for the fields, a condition in (Dn)610= — Yw X, 2%,
which the effective cooperatively of the system can be in- ’ N
creased sizably with respect to the opposite case of blue
(negative detuning. An attempt at an explanation for this 29w .
was made on the basis of a very simple model based on the (Dn)gg=— BN
dipole force that would attract cold atoms in the high-
intensity regions of the field for red detuning, and repulse y
them for blue detuning24]. A more complex situation in- (DN)MOZWW [X,Z* +X1(n—m)],
volving two different light fields was analyzed theoretically
very recently[25].

In this view, a too-strict correspondence between the pa-
rameters introduced in the modelspecially the cooperativ-
ity parameters and the input fields amplitudead their ex-
perimental counterparts loses sense. Instead we are naturally Y
led to consider the parameters of our theoretical model as (DN)ga=— N X1Z,
“averages” over more complex phenomena that take place
in the real experiment. The very fact that such effective pa-

i i Yul2 71

rameters can be defined, and used to obtain a very good (p )., =" [x,(v+v*)]+ — [1/35(1—m—n)],
description of the results, is actually a good proof of the ’ N N
robustness of the three-level model in our experimental con-

figuration. Yul2
(DN)1011= — % N(XW+X0™),

Yw
(DN)B,lIZW X1Z,

VIl. CONCLUSIONS

We presented the results of a recent QND experiment
performed with cold trapped rubidium atorfi0], and their
interpretation on the basis of a theoretical model for three-
level atoms in a cavity. By studying in detail the steady-state 2Yw
configurations allowed by the system and the quantum be- (DN)11,11:W
havior of the fields, we showed by theory and experiment,
how a ghost transition configuration for performing QND
measurements with atomjg® nonlinearity can be success-
fully implemented and optimized using cold atoms. The ex-
perimental results are the best obtained so far for a single N pé!
back-action-evading measurement, and the agreement be- N
tween theory and experiment is remarkable.

Y
(DN)1017= — WW (XaW+X0™),

Xl(U+U*)
Xa .
-I—Z(W-I—W )

[g (1+7/4)(1—m—n)

Yw
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APPENDIX
e : + +w*
Here we report the elements of the diffusion maiy, Xp(W+w )}
expressed in terms of the normalized variables: 4
Y1
[X1,X] \X2,X5 ,0,0%,wW,w*,z,z*,m,n,]: +ﬁ[§ 2 7/(l-—m=n)|,
(D)ee= — ﬁ S plus the ones obtained by conjugation and index permutation
N/6.6 N T from the terms abovéwe recall thatDy is symmetrical.
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