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The light emitted by a quasi-single-mode free-running laser diode is sent through a Michelson interferometer,
and the intensity noise of the outgoing light is studied with respect to the path difference between the two
arms of the interferometer. The level of this noise is determined by very strong anticorrelations between the
main mode and the many very weak, but noisy, longitudinal side modes. The different interference patterns
of these various modes can modify the noise compensation effect, leading to a large excess noise. Phase-noise
effects also come into the picture, since a Michelson interferometer tuned around a nonzero path difference is
a dispersive element capable of converting phase noise into intensity noise. The observed data is in good
agreement with a phenomenological model that attributes phase noise and correlated intensity noises to all the
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modes. The parameters of this model can be inferred from the experimental data. © 1997 Optical Society of

America [S0740-3224(97)03111-1]
PACS numbers: 42.55.Px, 42.50.Dv, 42.62.Fi

1. INTRODUCTION

Reduction of intensity noise of laser diodes below the
standard quantum limit (SQL) (or shot noise) was
achieved about a decade ago (Ref. 1 and 2 and references
therein). Intensity noise levels below the SQL are now
commonly observed. These results are based on the
faithful conversion of a regular electron flux into a regular
photon flux, owing to the high-quantum efficiency of semi-
conductor light emitters. However, the exact mecha-
nisms explaining why some laser diodes allow subshot-
noise operation, and others do not, are still under
investigations. Our purpose in this paper is to present
elements that could contribute to a better understanding
of these mechanisms.

It was observed a long time ago that the low total in-
tensity noise of quasi-single-mode laser diodes can be
caused by strong anticorrelations between the main mode
and the weak longitudinal side modes.?>® These studies
were mainly to investigate power dropouts statistics and
had no references to the SQL. In this paper we focus on
the importance of the weakly multimode behavior for de-
termining the quantum-noise properties of continuous-
wave quasi-single-mode laser diodes.®'2 Researchers
have demonstrated'? quantum anticorrelations between
the intensity noises of different longitudinal modes,
bringing the total intensity noise below the SQL, by send-
ing the output light of a laser diode into a high-resolution
spectrometer and analyzing the noise of the different
modes by varying the position and the size of the output
slit. According to the analysis presented by Marin
et al.,'? this effect is due to mode competition within an
homogeneously broadened gain medium. This anticorre-
lated modal noise is an important issue when the relevant
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noise properties are those of the main mode alone, as is
the case in spectroscopy or in telecommunications (wave-
length multiplexing). The reliability of optical communi-
cation depends both on the noise and on the spectral prop-
erties of the light emitters, which are usually laser diodes.
As we show in this paper, these two properties are in fact
strongly connected.

Here we employ an alternative method to demonstrate
the existence of mode anticorrelations in a quasi-single-
mode free-running laser diode by using a Michelson
interferometer.'® The principle of the experiment is that,
depending on the path difference between the arms of the
interferometer, the fringe patterns of the different modes
are not necessarily superimposed. When they are not su-
perimposed, the compensation between the noise of the
different modes is imperfect, giving rise to a large excess
noise. However, for periodic values of the path differ-
ence, all the fringe patterns come back in phase, and a
low-intensity noise level is recovered.

We have developed a phenomenological model describ-
ing the rather complex situation of a quasi-single-mode
laser with a multimode noise behavior in a Michelson in-
terferometer. We have also considered the phase
noise!*™16 of the different modes. This model is com-
pared with the experimental results, and the agreement
is very good.

We first present and discuss the experimental observa-
tions (Section 2). The phenomenological model is devel-
oped in Subsection 3.A, and its results are compared with
the experimental ones in Subsection 3.B. We give in Ap-
pendix A the detailed quantum calculation of the phase-
to-amplitude conversion for a single mode in a Michelson
interferometer. A theoretical analysis of phase-ampli-
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PZT %

Fig. 1. Experimental setup. A 30-dB optical isolator avoids
spurious feedback in the laser. The arm-length difference is
controlled finely by a PZT and coarsely by a translation stage
(not shown). The ac parts of the photocurrent are either added
or substracted and sent to a spectrum analyzer (SA). The dc
part of one of the detector is monitored on an oscilloscope to-
gether with the output signal of the SA.

tude correlations in a quasi-single-mode laser is sketched
in Appendix B, and indications on the quantum multi-
mode calculation are given in Appendix C.

2. EXPERIMENT

A. Experimental Setup

A sketch of the experimental setup is shown in Fig. 1.
The laser diode is an index-guided quantum well GaAlAs
device (model SDL 5411-G1) emitting at 800 nm, driven
by a low-noise current source. The laser temperature is
servo controlled. Its threshold current is I = 18 mA,
and the operating current for the data presented in this
paper is I,, = 86 mA. Using a spectrometer, we found
that the measured free spectral range of the laser cavity
is AA = 0.11 = 0.05 nm. The optical length of the cavity
is therefore L = A%/(2AN) = 2.9 + 0.15 mm. We see be-
low that this quantity is of interest in our experiment.

The noise detection is performed in the standard way,
with a balanced configuration.!” The SQL is recorded
when the power combiner is switched to the minus posi-
tion. The plus position gives the total-intensity noise.
The detectors are large-area, high-efficiency pin photo-
diodes (EG&G C30809E). The laser light is attenuated
by a factor of 4 to avoid saturation of the detectors. With
this attenuation, the dc current is 2.4 mA for each detec-
tor. The ac currents are amplified with a low-noise am-
plifier and then combined and sent to an electronic spec-
trum analyzer. The noise is analyzed at a frequency of
o/(27) = 10 MHz with a 100-kHz bandwidth. The out-
put of the spectrum analyzer is sent to an oscilloscope to-
gether with the dc signal of one of the detectors to allow
simultaneous recording of the noise and the mean-field
intensity.

The mirrors of the Michelson interferometer are corner
cubes to prevent light from being reflected back into the
laser. The contrast of the interferometer is better than
95%.
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B. Experimental Results

For a set of different values of the arm-length difference
l,, the piezoelectric transducer (PZT) is slowly (~1 Hz)
scanned over ~2 fringes. Typical graphs are shown in
Fig. 2.

For [, = 0 [Fig. 2(a)] the fringe patterns of all the dif-
ferent modes are in phase (white fringe), so the noise com-
pensation between the modes is as effective as it would be
in the directly detected laser light. For vanishing arm-
length difference, phase-noise effects, which are propor-
tional to (wl,/c)?, are also absent (cf. below and Appen-

20 '
(a)

15+
10 -

5+ L

0 /zia L

5 Tyt Nt
T T

0.6 -04 -02 00 02 04 06

Fine path difference scanning (A units)

Noise power (dB)

20 1 | |
15 ®
§ o™ s o~
) ; "
= 10
g "". & &
2 s | |
R
2 /”’“’\ ...........
T T T T
-06 -04 -02 00 02 04 06
Fine path difference scanning (A units)
20 ! L L L L
©
~ 15
[~
2
8
B
=
&
2
k=)
Z

T
06 -04 -02 00 02 04 06
Fine path difference scanning (A units)

Fig. 2. Example of fine PZT scans for (a) [, =0, (b) [,
= 1.44 mm (=0.47L), and (c) [, = 3.06 mm (=L). The solid
curves are the experimental data, and the dashed curves are the
theoretical fit. Note that for clarity there is no theoretical fit on
graph (a). The upper traces are the output noise of the interfer-
ometer, and the lower traces are the SQL level (proportional to
the light intensity). The 0-dB level corresponds to the SQL on a
bright fringe. It is obvious by comparing the experimental and
the theoretical SQL that the PZT scan is not rigorously linear.
The SA resolution bandwidth is 100 kHz with a video filter of 30
Hz. Recall that the laser light is attenuated by a factor of 4.
The fits are performed with five side modes on each side of the
main mode (M = 5). The parameter used for the fits are v,
= 11,0 =50, y=5,5 = 0.3, v} = 4107, and vi™ = 40"
The electronic noise level is 1/4 of the SQL at a bright fringe and
is included in the fits.
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dix A). Therefore the noise detected across the fringe
scan is always the total-intensity noise of the laser, which
is less than 1 dB above SQL.1%15

For [, = 0.475 L [Fig. 2(b)] the fringe patterns of the
different modes are somewhat randomly distributed.
Some of the side modes are on a dark fringe, while the
main mode is on a bright fringe or vice versa. The excess
intensity noise of the main mode is then no longer com-
pensated by the noise of the side modes, leading to a
large-intensity noise at the output of the interferometer.
The noise level at the top of a bright fringe is of the order
of the intensity noise of the main mode alone. The noise
minima on each side of a bright fringe can be simply un-
derstood if one assumes, for the sake of clarity, that all
the anticorrelation is concentrated into one side mode.
The noise is, therefore, equally split into the main mode
and this side mode, but their noise fringe patterns are out
of phase and therefore necessarily cross for some specific
value of the path difference at the fine scanning level. At
these specific locations the mode excess noise is, in prin-
ciple, perfectly compensated (what remains is the phase
noise, since now (wl,/c)? # 0). These minima are to be
found every \/4, and their position relative to the main-
mode fringe pattern depends on the dephasing between
the two noise fringe patterns and therefore on the path
difference at the coarse scanning level. In Fig. 2(b) the
absolute noise level is the same at a dark fringe and at a
bright fringe. This is because the excess noise at a bright
fringe is due to the lack of compensation of the main-
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mode intensity noise by all the destructively interfering
side modes. It is precisely this missing part that is found
at a dark fringe, exhibiting thus the same absolute noise.
Note that for 0 < [ < L the phase-noise effects have a
minor influence (see below and Appendix A).

For [, = L [Fig. 2(c)] the fringe patterns of all the
modes are back in phase; the individual mode excess
noise compensation is therefore maximum, as for [, = 0.
However, as can be seen in the figure, the noise pattern is
different from the [, = 0 case. This difference comes
from the fact that the laser phase noise is now visible
since (wl,/c)? # 0. The interferometer is a dispersive
device that acts as a quadrature rotator (cf. Appendix A)
and projects the very large laser phase noise onto the am-
plitude quadrature outside of a bright fringe.!* The
maximum noise level reached on the flanks gives the total
phase noise (main mode plus side modes). At the very
top of a bright fringe the noise level is the laser intensity
noise level.

We recorded 35 of these plots from [, = 0tol, = 24 L.
We extracted four characteristic quantities from these
plots and compiled them into the four graphs of Fig. 3.
The first important observation on the graphs of Fig. 3 is
that there is a periodic behavior with a periodicity equal
to the laser cavity optical length L = 3.05 mm.'® This is
due to the presence of anticorrelations between modes.®!2
Another important point is that we also have access to in-
formation about the phase noise of the different modes.
In this experiment the specific use of a Michelson inter-
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Fig. 3. These graphs compile four important quantities of fine PZT scans (cf. Fig. 2) for different values of the arm-length difference.
The x axis is the interferometer arm-length difference /, (in millimeters). The quantities displayed on the y axis are (a) the intensity
noise at the top of a bright fringe, (b) the minimum and (c¢) and the maximum noise level over a fine PZT scan, and (d) the position of the
minimum relative to the fringe pattern (d). The minima considered in graphs (b) and (d) are the ones closest to a bright fringe. In
graph (d) the minimum position is equal to 0.5 when the noise minimum is at the top of a bright fringe [like on Fig. 2(c)], and it is equal
to 0 or 1 when the noise minimum is halfway between a dark and a bright fringe. For all these graphs the diamonds are the experi-
mental data (the solid curve linking them is just a guide for the eye), and the dashed curves are the theoretical fits. Recall that the laser
light is attenuated by a factor of 4. The parameters used for the fits are identical to the ones used in Fig. 2.



J.-P. Poizat and P. Grangier

ferometer as a spectral discriminator allows mode anti-
correlation and phase-noise effects'*!® to appear simulta-
neously.

Before describing in more detail the four graphs of Fig.
3, we shall first discuss the relative size of the individual
mode excess noise with respect to the phase noise. When
l, = sL with s integer, the individual mode excess noises
are compensated (to as low as 1 dB above the SQL), and
only the phase-noise effects are present. Elsewhere, the
order of magnitude of the noncompensated mode excess
noises is the individual noise of the main mode v;,()).
With the notation introduced in detail in the Subsection
3.A, the order of magnitude of the phase noise of the main
mode is v\"(wl, /c)? (cf. Appendix A). So let us define a
critical length [, = (C/w)(U;,())/UEIO))l& at which the main-
mode phase-noise effects become of magnitude equal to
the main-mode intensity noise. Phase-noise effects come
in when [/ =1[,. With the fitting parameters used in
Figs. 2 and 3, we find /, = 5.3 mm. This estimation was
done without accounting for the side-mode phase noises,
which introduces more phase noise in the system and
leads to a slight lowering of the value of the critical length
l., as can be seen on the experimental results.

The first relevant quantity out of the four graphs that
we choose to display in Fig. 3 is the noise at the top of a
bright fringe [Fig. 3(a)]. The height of the first arch gives
the main-mode intensity noise. The fact that the height
of the following arches slightly increases as the arm-
length difference increases is attributed to the phase
noise of the side modes. The phase noise of the main
mode does not have an influence here since the noise is
taken at the top of one of its own fringes, where there is
no quadrature rotation.

The second quantity is the noise level at the noise mini-
mum closest to the bright fringe [Fig. 3(b)]. It singles out
information about the importance of the phase-noise ef-
fects, since the noise remaining at a minimum is mostly
caused by phase noise (except when [, = sL, where the
noise minimum is at the top of a bright fringe and corre-
sponds therefore only to intensity noise). The upperen-
velope of the curves (i.e., without the points around [,
= sL) gives the level of the phase noise. For [, ~ [,
(critical length defined above) this envelope comes to the
level of the intensity noise of the main mode alone.

The third quantity is the maximum noise level [Fig.
3(c)]. It is the upperenvelope of everything and therefore
provides information about the noise level of the domi-
nant noise source.

The fourth quantity is the position of the noise minima
relative to the laser fringe pattern [Fig. 3(d)]. Note that,
since the SQL is proportional to the intensity, the laser
fringe pattern is analogous to the shot-noise fringe pat-
tern. To fit these experimental results, we had to intro-
duce an asymmetry in the noise of the different side
modes. We did this in the model by shifting the origin of
the even function attenuating the intensity noise of the
side modes [see function f(m) in Subsection 3.A]. This is
physically justified since the frequency of the main mode
usually does not coincide with the frequency of the maxi-
mum laser gain.

We performed this whole experiment for different laser
temperatures (from 10 °C to 25 °C). Changing the laser
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temperature shifts spectrally the gain profile of the semi-
conductor, which has an influence on the multimode be-
havior of the laser and especially on its asymmetry. We
did observe weak quantitative modifications in the noise
behavior, which correspond to slightly different values of
the main-mode intensity and the phase noises.

3. PHENOMENOLOGICAL MODEL

A. Model

In this model there is one noisy main mode [labeled (0)]
that has a large mean photon number and 2M noisy
longitudinal side modes with negligible mean photon
number. The side modes thus do not contribute to the
mean-field fringes, and their frequencies Q" for m
e {-M, -M+ 1, .., M — 1, M} are given by

QM = Q4+ mu, (1)

where u is the free spectral range of the laser cavity, i.e.,
u = ¢/(2L), where L is the optical length of the cavity.

The intensity noises of the side modes are independent
and are anticorrelated with the intensity noise of the
main mode [cf. Eqs. (B9) and (B10) of Appendix B]. Each
mode has also a very large phase noise due to Schawlow—
Townes phase diffusion.!®

An important question is whether one should include in
the model phase-amplitude correlations that could be in-
duced by the so-called o parameter.!® From an experi-
mental point of view the effect of o would be to create an
asymmetry in the noise power when a fringe is scanned,;
this effect has already been exploited to reduce the ob-
served noise in a distributed feedback laser driven just
above threshold.2%?! In our case, when the laser is oper-
ated five times above threshold, no such asymmetry is ob-
served. However, the absence of phase-amplitude corre-
lations does not imply that @ = 0. It only means that far
above threshold, the measured output-intensity noise is
not coupled to the carrier fluctuations, which induce
phase noise and linewidth broadening through the « pa-
rameter. Such a behavior was previously predicted for a
single-mode laser operating far above threshold.?! From
our observations it can be deduced that the same behavior
occurs in the quasi-single-mode case; a theoretical justifi-
cation of this observation is sketched in Appendix B.

For simplicity the model is presented for M = 1 (one
mode on each side of the main mode). All the informa-
tion concerning the amplitude and the phase noises of the
laser modes is contained in the (4M + 2) X (4M + 2)
input symmetrized covariance matrix .”;,*(w). The su-
perscript a labels the input port of the Michelson inter-
ferometer (cf. Fig. 1). Using symmetrized products, we
define this matrix by

S (0) = pin(@)[ P —w)]7, ®)
where, for M=1,
Pu(©) = [pih (0), ¢ V), P(0), ¢ (o),
pi(w), ¢ ()7, 3)
(

with p{™ (¢{™) being the amplitude (phase) of mode m,
and Sp = p — (p). The output symmetrized covariance
matrix is defined similarly by .7, (@) = dpoulw)
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X [6poui( —®)]7. Note that all the noises are in units of
the main mode SQL. The SQL of a side mode is propor-
tional to its intensity, which has been neglected in this
model. The noises of the side modes are thus very large
compared with their own SQL and are therefore treated
as classical noises. This means that the (4M + 2)
X (4M + 2) symmetrized covariance matrix .¥?(w) of
the vacuum state corresponding to the other input of the
interferometer (cf. Fig. 1) has no vacuum noise contribu-
tion for the side modes and is taken to be equal to

o) 0 o
Sil(w) =0 (1 0) O]. 4)
m O 1
0] o 0]

In our model there are intermode correlations only be-
tween the amplitudes, and, as already said, the phase of a
mode is coupled neither to its own amplitude nor to the
total amplitude (Appendix B). Then arbitrary param-
eters (for an analysis frequency w/27 = 10 MHz) are the
following:

e The total intensity noise v, (normalized to the
SQL) of the laser diode with a direct detection. This
quantity is given by the noise level for [, = 0 [Fig.
2(a)).

e The main-mode intensity noise v =
(6p'"(@)6p'Y(—w)) (normalized to the SQL). Its
value is directly inferred from the height of the first
arch in Fig. 3(a).

¢ The die-away function f(m) gives the relative con-
tribution of side mode m. This function is chosen
equal to f(m) = 10797 where vy is the die-away co-
efficient, and s describes an eventual asymmetry in the
intensity noise of the side modes. The 7y coefficient is
adjusted to fit the general shape of the archs of Fig.
3(a), whereas s is deduced from the relative position of
the fringe minimum [Fig. 3(d)]. The exact expression
for the intensity noise of mode m is given below [Eq.
B)1.

e The phase-noise level of the main mode v'®
= (69 9(0)6¢'”(—w)) (normalized to the SQL). The
value of the total (i.e., main mode plus side modes)
phase noise is given by the maximum noise level in a
fine scan for [, = L [Fig. 2(c)]. The side-mode phase
noise can be obtained independently (see below and
Subsection 3.B).

* The side-mode phase-noise level is v,*" (normal-
ized to the main mode SQL). Its value is deduced from
the arch height increase in Fig. 3(a) and the position of
the fringe minimum [Fig. 3(d)]. The exact phase noise
of mode m is given in Eq. (6).

Without any loss of generality, all the uncorrelated in-
tensity noise v, is concentrated into the main mode. The
intensity noise of mode m is given by

(p™(w)op™(—w)) = W = v)[f(m)IYN, (5)

where N = =, o[ f(m)]? is a normalization coefficient.
The total intensity noise v, appears then as the result of
an imbalance between the main-mode and the side-mode
noises.!?
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The phase noise of mode m (m # 0) is given by
(8¢ ()89 (~w)) = v (w)[ f(m)]*/N. (6)

The only nonzero intensity correlations are those be-
tween each side mode and the main mode (Appendix B).
They are given by

(6p'™ (@) 3p V(= w)) = (p () p "™ (~w))
= (o). (7)

The quadrature rotation matrices .2% w) and .2%(w),
which describe how the phase noise is converted into the
intensity noise for the laser and for the vacuum, respec-
tively, are built by blocks from the matrices R*(w) and
R®(w) given in Eqs. (A9) and (A10) of Appendix A. We
have

R{ ;\(w) o o)
R (w) = o R{p)(w) o (8)
o) o) R{;(w)

and a similar equation for .%2%(w).
The symmetrized output noise covariance matrix is
given by

Y out(®) = Pout( @)[ 8Pt —)]”

2 w0).S i (0)[ 2 (~0)]T + 2% (0) 7 (o)
X[.28(—w)]T. 9)

Note that this equation is formally identical to Eq. (A11)
of Appendix A.

The absolute noise of mode m is the product of its fluc-
tuations 8p™(w) by sin(Q"™1,/c). A rigorous explana-
tion of this can be given in the framework of the fully
quantum multimode calculation, where the absolute noise
of each mode is obtained by multiplication of its SQL-
normalized fluctuations by the field of its local oscillator
(Appendix C). The absolute amplitude noise 6P")(w) of
mode m is given by

SP™(w) = 8p'™(w)sin(Q™1, /c). (10)

out out

The total-intensity noise B, (w) is thus given by

Bo(w) =

M
> PI(—w)
m=—M

M
mZM SPU(w)

(1D

B. Comparison with the Experiment

The fits between the phenomenological model and the ex-
perimental results are performed with the six arbitrary
parameters introduced above. Among them, the total-
intensity noise level v,, the main-mode intensity noise

v | the main-mode phase noise vf;)), and the side-mode

pI})lase noise v,™ have a clear physical meaning. Their
values can be inferred almost independently from the
various figures as mentioned above (Subsection 3.A).
This facilitates the optimization procedure of the multipa-
rameter fit. The physical contents of the die-away func-
tion f(m) (two parameters) is, however, less straightfor-
ward. The calculation has been done with five side

modes on each side of the main mode (M = 5), while the
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real laser has more than 150 on each side.!> The die-
away coefficient y is therefore more of an ad hoc param-
eter introduced to describe the 150 side modes with only
five. Finally, the main influence of the values of the
asymmetry parameter s is on the position of the noise
minimum in Fig. 3(d).

Note that the same set of parameters has been used for
all the graphs of Figs. 2 and 3. The agreement between
theory and experiment is globally quite satisfactory. It
allows us to extract the useful information.

The total-intensity noise v, is obtained directly from
Fig. 2(a) with an accuracy of 0.2 dB. Its value is v,
= 1.1 = 0.04 (a value of 1 would correspond to the SQL).
The excess intensity noise of the main mode U;O) is inde-
pendently deduced from the fit (+1 dB) to the first arch of
Fig. 3(a). Its value is U;)O) = 50 = 10. These two quan-
tities are completely independent and are obtained from a
one-parameter fit. The uncertainties are directly in-
ferred from the experimental accuracy as can be seen on
the corresponding graphs. The total amount of phase
noise vflo) + vy" lincluding all side modes; Eq. (6)] can
also be evaluated in a single-parameter fit from Fig. 2(c)
to better than 1 dB. The magnitude of the side-mode
phase noise is determined by the global slope in Fig. 3(c),
but the relative weight of the two contributions has, how-
ever, a rather large uncertainty (=3 dB). The best fits
are obtained for vfzo) = 4.10" and vy = 4v;0). The
asymmetry parameter s is estimated from the general
shape of Fig. 3(d), and its value is s = 0.2 = 0.1. Note
that the fine scan curves in the second arch (L </,
< 2L) are almost flat, which renders the position of the
minima not very meaningful, and therefore the discrep-
ency in the fit not very important. The die-away coeffi-
cient yis taken to match the general shape of the archs in
Fig. 3(a), given the limited number of modes (M = 5)
used in the model.

Also recall that these plots have been obtained with an
attenuation of the laser beam by a factor of 4 (6 dB), and
that for convenience the fits have been performed on this
raw data. An extra 1 dB, when the propagation losses
and the detection efficiency are considered, has also to be
added to obtain the true noises at the laser output. The
real total-intensity noise is then 1.8 = 0.2 dB above the
SQL like in our previous measurements'?!® where it was
2 dB. The true phase noise is 83 = 2 dB above the SQL,
which agrees with the value (82 + 1dB) found for the
same laser with another setup with an 8-MHz bandwidth
(HWHM) Fabry—Perot cavity.!® The main-mode inten-
sity noise is found to be 24 = 1 dB above the SQL, while
the value found with a high-resolution spectrometer for
another similar laser from the same manufacturer was
39 + 1dB."2

This last quantitative change can be attributed to the
fact that the multimode noise characteristic of a laser di-
ode is very sensitive to laser temperature, extremely
weak feedback in the laser, etc. It is therefore very dif-
ficult to recover exactly identical experimental conditions
from one experimental setup to another. Nevertheless,
the qualitative behavior of the system is very well de-
scribed by our model and confirms the main results of
Refs. 12 and 15, which are respectively the existence of
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very strong anticorrelations between main-mode and
side-mode intensity noises, and very large phase noise.

Note that we have also tried to fit the experimental
data with a model in which the side modes are individu-
ally correlated with each other. The best fit was not as
good as the one presented in Fig. 3, which was obtained
with uncorrelated side modes. The assumption used in
the paper is therefore clearly constrained by the data.
Moreover, it is supported by theoretical evidence (Appen-
dix B).

4. CONCLUSION

In this paper we have used an alternative method em-
ploying a Michelson interferometer to demonstrate and
confirm that the low level of intensity noise of some quasi-
single-mode laser diodes is caused by strong anticorrela-
tions between the main mode on the one hand and a large
number of longitudinal side modes on the other hand.'?

Furthermore, a correct description of this system re-
quires the inclusion of phase-noise effects. It has been
shown'® that free-running laser diodes have extremely
large phase noise (more than 80 dB above the SQL). A
Michelson interferometer is a dispersive device that con-
verts phase noise into intensity noise, therefore bringing
phase noise into the picture. However, phase-amplitude
coupling effects within the laser'® did not show up in the
experimental results and have therefore not been in-
cluded in the theory. This behavior is in agreement with
the theoretical predictions from a model published
earlier.?

The phenomenological model we have developed in-
cludes phase noise as well as correlations of the longitu-
dinal modes intensity noise. This model fits quite well
with the experimental results and allows the quantitative
determination of useful parameters such as the indi-
vidual intensity noise of the main mode and its phase
noise. These values are in reasonably good agreement
with previously published results.!?1%

APPENDIX A: QUADRATURE ROTATION
AFTER PROPAGATION IN A
MICHELSON INTERFEROMETER

In this appendix we derive the rotation undergone by the
quadrature components of a single-mode light beam with
an optical frequency (/27 at an analysis frequency w/2m
after propagation through a Michelson interferometer.
Using the definitions of the field operators given in Fig. 1,
we obtain the input—output relation for the field opera-
tors:

Uout(®) = A(0)uip(w) + B(w)vip(w), (A1)
with
_ ain,out(w) _ bin,out(w)
uin,out(w) - ainoutf(w) ’ Uin,out(w) - binoutf(w) )

(A2)
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. [—i sin(s)exp(is) 0 }
Alw) = 0 i sin(d)exp(—id)|’
(A3)
B cos(s)exp(is) 0
B(w) = 0 cos(d)exp(—id)|’
(A4)

where s = (Q + w)l,/c,d = (Q — w)l,/c, and [, is the
length difference between the two arms of the interferom-
eter (the optical path difference is equal to 2/,). The in-
put laser light is described by ¢;,(®w), and b;,(®) accounts
for the vacuum field entering the unused port of the in-
terferometer. Note that we have a;, (@) = [a;(—w)]
and a similar equation for the other operators.

The amplitude and the phase quadratures are defined
by

Uin,out = Tin,outuin,out9

Vin,out = Tin,outv in,out » (A5)
with
pinouta(w)} pinoutb(w)}
U; = T > Vinout = ' P A6
In,out 4in,out (w) n,out Qin,outb(w) (A6)

11 1
Tin:_ B

Bl-i i
1

out:\/_g

So if we turn into the quadrature basis, we obtain

i exp(—iQl,/c)
exp(—i1Ql,/c)

—i exp(iQl,/c)

T exp(iQl,/c)

AT)

Uout(w) = ToutA(w)TinilUin(w) + ToutB(w)Tinilvin(w)y
(A8)
where T, A(w)T;, "' = R% w) is explicitly given by

J.-P. Poizat and P. Grangier

Sina(w) = <5Uin(w)[6Uin(_w)]T>7
Sin’(0) = (8Viy(@)[ 8Vin(—w)]7). (A12)

Note that S;,%(w)(1,1) and S;;*(w)(2,2) are, respec-
tively, the amplitude and the phase noise of the input la-
ser light. The off-diagonal terms account for the
amplitude—phase correlations. For a standard vacuum,
we have S;,’(w) = L

The SQL is proportional to the intensity at the output
port. Assuming that the b field is the vacuum, the SQL
is proportional to sin?(Ql,/c). The absolute noise fluc-
tuations are given by the product of the SQL-normalized
noise fluctuations 6U () by the field of the local oscil-
lator that is the mean field p ,+* sin(Q)/,/c). The absolute
noise power N () is then given by (see Appendix C)

Noi(@) = S o @)sin(Ql, /c). (A13)

APPENDIX B: PHASE-AMPLITUDE
COUPLING IN QUASI-SINGLE-MODE LASER
DIODES

The purpose of the calculation presented here is to point
out that a nonzero value of the well-known « or Henry’s
parameter,'® which couples the phase noise to the carrier
fluctuations, does not imply the existence of correlations
between the output intensity and the phase noise of the
laser. This is true even if «a contributes significantly to
increase the laser linewidth, and it is basically because,
far above threshold, the output intensity noise is decou-
pled from the noise sources that contribute to the laser
phase and/or frequency noise. It was already demon-
strated by Karlsson and Bjork?! that, in a single-mode la-
ser driven far above threshold, there are no correlations
between the intensity and the phase noise of the output
beam. We show in this appendix that the situation is

Ra .y sin(Q1, /c)cos(wl, /c) 1 cos(Ql,/c)sin(wl,/c) A
(@) = explila /o) . ol fe)sin(ol, fo)  sin(QL, fe)cos(wl, fo) |© 2D
and T, B(w)T;,~! = R%(w) by
—i sin(Q,/c)sin(wl,/c)  —cos(Ql,/c)cos(wl,/c)

b — .
RY(w) = expliol,/e) cos(Ql, /c)cos(wl, /c)

If the two fields a and & have independent fluctuations,
the symmetrized noise covariance matrix S, of the out-
put beam a; is then given by

Sout(w) = 5Uout(w)[ 5Uout( _w)]T
= R*(0)Si"(0)[R*(—w)]"
+ RY(0)Si,’(0)[R*(—w)]",  (A1D)

where the symmetrized input covariance matrices are

—i sin(Q!,/c)sin(wl,/c)

. (Al10)

similar for a homogeneously broadened multimode laser
diode driven far above threshold.

The quasi-single-mode laser diode is described by three
modes (one main mode, labeled 0 and two side modes, la-
beled —1 and 1) coupled to a common carrier population
(homogeneous behavior).>!? The dynamic variables are
the internal electromagnetic fields ¢™ of the mode (m),
and the total number of excited carriers N. Rather than
using the field variables, we use the photon numbers n ™
and the phase fluctuations 8¢"™. The latter is defined
in the linearized approximation as [{a"™7)sa™
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_ <a(m)>5a(m)f]/[2i<n(m)>]‘
the photon numbers are then

The equations obeyed by

drn™ () n(m
= + NOA™ (™ () + 1) + £F™(2)
dt 7(m
+ G™(t) (B1)

and can be linearized around the steady-state values to
yield

dén™t) 1 1
— "zl (NYA™ | 50t
+ (™ + DAMSN() + ™ + G
(B2)

We will not write the imaginary part of the field equa-
tions, which determines the frequencies of the modes, but
directly give the linearized equations for the phase noise
in each mode:

sp'™ 1
# = o MAM SN(£) + o [Fom(t)

+ G™(1)]. (B3)

In the equations above, the quantity 1/7™ is the pho-
ton decay rate of mode (m), which we assume to be
present only because of the output coupling mirror. (The
role of optical losses will be discussed below.) The coeffi-
cient A" is the spontaneous emission rate into the cor-
responding lasing mode. The o™ parameter is the
phase-carrier coupling coefficient.!® The last terms are
Langevin noise terms, with real (r) and imaginary (i)
parts defined with respect to the average fields (a'™).
These noises are respectively associated with the
stimulated-emission gain [correlation (G{™(#)G\™(t"))
= (G™WHG™ (")) = 8t — t"HA™(N)Yn'™)] and the
output  coupling  [correlation  (f E'”)(t)f §m>(t’)> =
(Fm@ ™)y = 6 — ¢t )}{n™)/ ™)1,

The equation of motion for the total excited carrier
number N(¢) is

dﬁ(t) —p- > AM(n(t) + 1N(2)
¢ 7-sp m
+ Tpy(t) + Tip(t) + Tip(2), (B4)

where P is the pumping rate and 7, is the spontaneous
electron lifetime. The last three terms are Langevin
noises. The first one, I'(,)(¢), is associated with the
pump noise, and for a pump-noise-suppressed laser its
correlation function is (I'(,)(£)I'(,)(¢')) = 0. The terms
Fp(t) and Iy (2), associated with spontaneous and
stimulated emission noise, respectively, have correlations
(Pep@Tep(t")) = 8(& = £')(N)/ 75, and (Fp(8) T sp(2))
= 6t — t")2,,A™(NYn"™). Finally, owing to their
same physical origin, the noise terms associated with the
stimulated gain for the photons and the stimulated emis-
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sion for the electrons are perfectly anticorrelated and
have cross correlations (GU(£)I(t")) = —8(¢
— t’)A(m)(NXn(’")).

In our situation the laser is operating in quasi-single
mode far above threshold. Therefore the numbers of pho-
tons in the side modes n‘~5(¢) are small and are taken
as first-order corrections, and one has n® + 1 ~ n(©,
Defining Py = 1/(A(0)T(0)Tsp) and pLY
= (ACLDCLDY/(AO LDy the stationary solutions far
above threshold are (N) = Py, (nOy = (P— Py)7?,
and (n"bV) = pCLU/(1 — pL Y)Y The linearized
equations around these stationary values are then Fou-
rier transformed, and one obtains for the fluctuations at
zero frequency

AV )N = —(f1¥ + G\), (B5)

(1 = pttyonL /2771y = ACL (R (LY SN
+ f(*l,l) + G(*l,l)’
(B6)

ANy = —(Urgy, + AV ) sN
— <N>(A(—1)5n(—l)
+ AWsnh)

+ Py + Ty + Ty -
(B7)

The output intensity noise can be obtained by use of the
standard input—output relation:

snlit) = (Urm)ysntm) — fim) (B8)

To obtain a simple expression for the output photon num-
ber fluctuations, we use the input—output relation [Eq.
(B8)], neglect noise terms whose correlations or autocor-
relations are proportional to (n(71'1)>, and neglect the
terms ON/7g, and I' ;) because of far-above-threshold op-
eration. From Egs. (B5)—(B8) one then obtains

sn0) = —(onl Y + on'l)

out out out

) + Ty (B9)

571(_1’1) — 2<n(71, 1)>(f£—1,1) + Gi—l,l)).

out

(B10)

It can be seen from these equations that the total in-
tensity noise = 6n™ is only limited by the pump noise, ex-
actly like én,, in a single-mode laser. On the other
hand, én'." (6n'l) depends only on the Langevin forces
with subscript (=1) [(1)]. The side-mode fluctuations are
therefore uncorrelated with each other. Finally, when
the expression of SN given by Eq. (B5) is used, Eq. (B3)

becomes
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dsgp'™(t)  —a'™
& (n)

(£ + G

1
m m

+ (o (Fi™ + G™).  (B11)
It can be straightforwardly deduced from Eq. (B11) that
the laser linewidth of the main mode will be increased by
the usual factor (1 + «?) with respect to the Schawlow—
Townes linewidth,'® where the noise associated with a2
comes from the real part of the Langevin noise.

Looking at the total-intensity noise at the laser output,
it is clear that the term owing to the carrier number fluc-
tuations is compensated by the f 50) and GiO) terms in the
Langevin noise term far above threshold: this is the ori-
gin of squeezing effect, which remains limited by the term
owing to the pump noise I',). Therefore the total-
intensity noise does not depend anymore on the Langevin
noise in the main mode, in contrast to the phase noise as
shown by Eq. (B11) above. This behavior is the same as
the one for a single-mode diode, considered by Karlsson
and Bjork?!: the amplitude-phase correlations, which
are present slightly above threshold, vanish with increas-
ing pumping current. In this case one may ask whether
the very large excess noise present in the individual
modes will appear on the phase; the equations above
show that this is not the case: as shown in Eq. (B11), the
phase noise in mode (m) depends on the real part of the
Langevin noise of the main mode (through the « param-
eter) and on the imaginary part of the Langevin noise of
mode (m). None of these noise sources is coupled to the
real part of the Langevin noise of the side modes, which
determines the large intensity noise in the individual
modes [Eq. (B10)].

From all the above remarks one can conclude that, in a
quasi-single-mode laser driven far above threshold, the
part of the laser phase noise owing to the carrier number
fluctuations is correlated neither to the individual inten-
sity noise nor to the total-intensity noise. This result is
in agreement with our experimental observations. How-
ever, we point out that, in practice, the squeezing in the
total-intensity noise is limited by other effects, which
have been deliberately omitted so far: first, the optical
losses inside the cavity, and second, the fact that the per-
fect anticorrelation between the modes is partially de-
stroyed by various mechanisms, such as self-saturation of
each mode!? or nonlinear gain.??  When these effects are
considered, the calculation shows that the carrier noise
picks up some contribution of the large excess noise of the
individual modes. However, this contribution remains
small in the range of parameters considered in Ref. 12,
which is also relevant for this experiment.

APPENDIX C: HINTS ON THE MULTIMODE
QUANTUM CALCULATION

In this appendix we briefly sketch a full multimode quan-
tum calculation. Within this framework the mean values
of the side-mode fields (written as €™’) are not neglected,
and the noise of the side modes are normalized to their
own SQL (denoted with a gy subscript).
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To get the absolute noise of mode m, the (SQL-
normalized) fluctuations 5p(m)(w) and 5qSN)(w) which
are respectively given by ™)/ €™  and
5¢"(w)/ €™, have to be multiplied by the field of their
local oscillator, which is nothing more than their own field
€™ sin(Q],/c). Let us define an absolute fluctuation
vector § Py (w) as (for M = 1)

6P0ut(w)
6P V(w) T eV sin(QV, /o) p it (w) T
6Qéu3><w> e sin(Q VL, /e) by ()
6P w) € sin(Q©1, /c) 5pN(w)
T Q0w | T | € sin(Q©1, /c)sg R w)
6PL(w) eV sin(QWV1, /c) op (o)
QN(w) | L €V sin(QMi,/c)dgR(w) |

rsin(QC V1, /e¢)pV(w)
sin(Q Y1, /¢) 8¢ P (w)
sin(Q97,/¢)8p' 9 (w)
=1 sin(Q©7,/c)sgO(w) |- (C1)
sin(QW1, /¢)dp ™V (w)
sin(QW1, /c)6q'V (w)

The result used in the main text is thus demonstrated.
So we can now define an absolute noise correlation ma-
trix ./ (@) by

V) =

The total intensity noise at the output of the interfer-
ometer is given by

5Pout( w) [Pout( - w)]T- (C2)

2 SP™) (@)

Bout( w) =

2 P~ w>}
(C3)

The terms of this sum are to be picked up in the absolute
noise-correlation matrix ./ ().
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