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*francois.goudail@institutoptique.fr

Abstract: It is possible to reduce the diffraction peaks of a Spatial
Light Modulator (SLM) by breaking the periodicity of the pixels shape.
We propose a theoretical investigation of a SLM that would be based on
a Voronoi diagram, obtained by deforming a regular grid, and show that
for a specific deformation parameter the diffraction peaks disappear and
are replaced with a speckle-like diffraction halo. We also develop a simple
model to determine the shape and the level of this halo.
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Angew. Math. 134, 198–287 (1908).

1. Introduction

Spatial Light Modulators (SLMs) are components that can locally modulate the amplitude and
/ or the phase of an incoming wavefront [1]. One can cite DMD (Deformable Micromirror De-
vice) [2–5] and nematic liquid crystals [6,7] as representative examples. Here, we shall consider
transmissive SLMs, although the concepts apply equally well to reflective devices. SLMs are

#128666 - $15.00 USD Received 21 May 2010; revised 18 Jun 2010; accepted 18 Jun 2010; published 1 Jul 2010
(C) 2010 OSA 5 July 2010 / Vol. 18,  No. 14 / OPTICS EXPRESS  15223



often pixellated, that is, divided in small cells whose transmittance is constant and that are sepa-
rated by walls. The pixels are in general square or rectangle-shaped and distributed periodically
over the plane of the modulator. Due to that periodic arrangement, the images formed by such
devices are often affected by artifacts that can bother a human observer or perturb automatic
analysis of the images [8]. We shall consider more specifically SLMs used in the Fraunhofer
diffraction regime, where the intensity distribution of interest to the observer is the squared
modulus of the Fourier transform of the SLM complex amplitude transmittance. In that case,
unwanted, periodically distributed diffraction peaks arise in the observation plane. As one typ-
ical example, the situation occurs for the display of a complex amplitude distribution obtained
by computer generated holography [9]. Please note however that the specific complex ampli-
tude distribution displayed on the SLM is not our concern here, and we are solely interested in
the effect of the pixel shape. In our analysis, we shall therefore assume that the transmittances
of all the pixels of the SLM are the same and concentrate on the Fraunhofer diffraction pattern
that results from the pixels shape.

To reduce the diffraction peaks, it is attractive to break the periodicity by employing other
spatial distributions of pixel shapes and sizes. The purpose of this article is to propose ways
of designing such distributions by starting from a regular square shape grid and deforming it
with the technique of Voronoi diagrams [10]. In particular, we will determine the deformation
parameters that minimize the diffractions peaks. It should be stressed that we shall focus on
the optimization of the structure of the modulators and we shall not address their fabrication or
their electrical addressing issues.

In Section 2, we shall briefly describe our design technique and show that the deformation of
the modulator grid induces a reduction of the diffraction peaks and the apparition of a speckle-
like diffraction halo around the zero-order peak. In Section 3, we shall develop a simple model
to determine the shape and the level of the diffraction halo. In Section 4, we shall model the
evolution of the diffraction peaks and identify values of the deformation parameter for which
they completely disappear. We shall then conclude and give perspectives for this work.

2. Description of the problem

Let us start from a structure where the walls that separate the cells form a square grid. The
centres of the cells also lie on a square grid with the same periodicity that we denote d. In
order to introduce disorder in the structure, we randomly displace the cell centres according to
a given statistical law. One can associate to each new cell centre pi its Voronoi cell, which is
the set of all the points that are closer to pi than to any other centre pj ( j �= i). The set of all the
Voronoi cells is called a Voronoi diagram, as it is shown on Fig. 1. The new grid structure is
defined as the Voronoi diagram obtained from the displaced cell centres. For example, we have
represented on Fig. 2, different grid structures that correspond to different levels of disorder.
They have been generated by displacing the cell centres so that each displacement in x and y
direction is the realization of a uniform random variable in the interval [−α/2,α/2]. We define
the deformation factor as follows :

a =
α
d

(1)

The grids in Fig. 2 correspond to different values of a. We have also represented in this figure
the histograms of wall orientations of each grid. The most interesting characteristic of these
structures is the way in which they affect the quality of the image of a point-like object when
the SLM is placed in the pupil of the imaging system. For that purpose, we have assumed that
the modulator is placed in the pupil of a perfect lens and illuminated by a monochromatic plane
wave of wavelength λ , propagating parallel to the optical axis. We observe the distribution
of light intensity in the focal plane, which is, in this simple case, the squared modulus of the
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Fig. 1. Voronoi diagram

Fourier transform of the modulator transmittance. For simplicity’s sake, we assume that the
walls are absorbing (transmittance equal to 0) and the cells are transparent (transmittance equal
to 1). The walls thickness is e = d/20 and the modulator aperture is a disc of diameter 2R.
We have represented in Fig. 3 the two dimensional intensity distribution in the focal plane for
each modulator shape represented in Fig. 2 as well as a cross section in the horizontal direction.
Here and in the following, the conditions of scalar, low angle approximations are assumed to
be valid.

In Fig. 2a, the grid is square shaped with pixel pitch equal to d, in this case with d = R/20.
There are only two possible wall orientations, as appears clearly in the histogram in Fig. 2b. Its
is observed in Fig. 3a and 3b that the intensity distribution in the focal plane consists of a zeroth
order, located at zero diffraction angle (highlighted by a circle on Fig. 3) and of secondary
orders (peaks) periodically distributed with an angular period equal to λ/d. For example, the
first order peak is highlighted by a dotted circle on Fig. 3b.

The grid structure represented in Fig. 2c corresponds to a small deformation of the square
grid with a parameter a = 0.5. It is seen in Fig. 2d that the orientations of the walls are more
scattered than in the regular case but the walls still possess privileged orientations. It is also
observed in Fig. 3c and 3d that the amplitudes of the higher order peaks are reduced, espe-
cially those located at angles larger than 3λ/d. On the other hand, a scattered light distribution
appears between the peaks. In the following, we shall call it the diffraction ”halo”.

The grid structure represented in Fig. 2e corresponds to a larger deformation factor (a =
1.27) : it is seen on Fig. 2f that the orientations of the walls are quasi-uniformly distributed
over [0,π]. Indeed, the estimated variance of the wall orientation angle expressed in radian is
σ2 = 0.826, which is quite close to the value corresponding to a uniform distribution over [0,π],
i.e π2/12 = 0.82. If we look at the intensity distribution in Fig. 3e and 3f, all the higher order
peaks have disappeared and the level of the halo has slightly increased. If a is further increased,
as in Fig. 2g (a = 1.5), we see in Fig. 2h that wall orientations remain uniformly distributed but
the first and second diffraction peaks slightly reappear (see Fig. 3g and 3h).

This example shows that increasing the deformation factor generates two phenomena. Firstly,
the higher order peaks diminish, disappear and then slightly reappear. Secondly, the energy of
the diffraction peaks is transferred to a speckle-like halo. Our purpose in the sequel of this
paper will be to explain these phenomena using simple heuristic models. In Section 3, we will
propose a model for the halo, and in Section 4, we will explain the evolution of the higher order
peak intensities as the deformation factor varies.
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Fig. 2. Effect of an increasing randomness in the distribution of the cell centres. The initial
square grid (a) has a pitch equal to d = 100μm. Pupil radius R = 2mm. (c, e, g) : Associated
Voronoi diagrams. The centres are moved according to a uniform distribution on a square
of side α = ad with a = 0.5, a = 1.27 and a = 1.5. (b, d, f, h) : Corresponding histograms
of wall orientations.
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(a) (b)
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Fig. 3. Fraunhofer diffraction patterns of the components of Fig.2 (a, c, e, g) and their
horizontal cross sections through the center (b, d, f, h) for λ = 0.5μm, d = 100μm, l = 5μm
and R = 2mm. The images as well as the cross-sections are shown in a logarithmic scale.
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Fig. 4. Diffraction by a rectangular slit of width l, length L and orientation α

3. Model of the diffraction halo

We have seen in the previous section that when the Voronoi diagram is sufficiently distorted,
the orientations of the walls are uniformly distributed over [0,π] and the intensity distribution
in the diffraction pattern looks like a halo. Our purpose in this section is to propose a heuristic
model for the level and the angular variation of this halo. For that purpose, we will consider
a set of N rectangular slits all included in a square aperture of side C. We assume that they
are transparent (transmittance 1) whereas the rest of the square is absorbing (transmittance
0). We also assume that they have the same length L and width l but that their orientation
angles αk and their positions (xk,yk) are independent random variables. We introduce that object
as a partial model of the Voronoi diagram, where the slits represent the walls separating the
Voronoi pixels. Indeed, the opposite (opaque slits on a transparent background) would be a
more accurate model, but as it is well known from Babinet’s principle, the only difference
would be the amplitude of the central peak. Moreover, we do not take into account the fact that
in a Voronoi diagram, the lengths of the walls are different and that their orientations and their
positions are not statistically independent since they are connected to form convex cells. As a
result, it is expected that this model will represent the behavior of the halo but not of the higher
order diffraction peaks.

As in the previous section, we will consider the diffracted intensity in the focal plane of a lens
(see Fig. 4). Let us denote by θk = [αk,xk,yk] the vector of random variables that characterizes
a rectangular slit and fθk(x,y) its transmittance. One has :

fθk(x,y) = rect

[
x̃k sinαk − ỹk cosαk

l

]
rect

[
x̃k cosαk + ỹk sinαk

L

]
(2)

where x̃k = x − xk, ỹk = y − yk and the function rect(x) is equal to 1 when x belongs to
[−1/2,1/2] and zero otherwise. As detailed in Appendix 5, and neglecting the fact that some
of the slits may overlap, one can show that the average intensity 〈I(θdi f f )〉 diffracted at angle
θdi f f in the focal plane by the N slits is :

〈I(θdi f f )〉 � Nl2L2

πλ 2 f 2

∫ π

0

sin2(πl
λ tanθdi f f sinϕ)sin2(πL

λ tanθdi f f cosϕ)
π4l2L2

4λ 4 tan4 θdi f f sin2(2ϕ)
dϕ (3)

Because it relies on the incoherent superposition of all slit diffraction patterns, Eq. (3) is valid
only outside the central peak θdi f f = 0, where they all combine coherently. Indeed, for θdi f f =
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(a) (b)

(c) (d)

Fig. 5. Comparison, at λ = 0.5μm, of the diffracted intensity computed by the slits cloud
simulation (dotted line) and the theoretical model given by Eq. (3) (solid line) for N = 2000
slits with random orientations and positions according to a uniform distribution over [0,π]
and [−C

2 , C
2 ]. The length of all the slits is L = 100μm and the width : (a) l = 5μm, (b)

l = 10μm, (c) l = 15μm and (d) l = 20μm.

0, as the transmittance of the slits is equal to 1 and the rest of the aperture has a transmittance
equal to 0, one gets :

〈I(0)〉 = |∑
k

f̃θk(0,0)|2 =
1

λ 2 f 2 |Nε|2 (4)

where ε is the surface of a rectangular slit.
In Fig. 5, we compare the result of Eq. (3) with the direct simulation of the intensity diffracted

by a realization of a cloud of slits, which is given by the sum of the squared modulus of the
Fourier transforms of all slits transmittances. The simulation was performed using a slit cloud
model sampled at an interval of 5μm. For each horizontal cross section represented in Fig. 5, the
sampling by square numerical pixels increases the diffracted intensity by a factor corresponding
to the squared modulus of their Fourier transform.

Two conclusions can be drawn. Firstly, Fig. 5 shows that the approximation we have made to
obtain Eq. (3) [see Appendix 5, Eq. (19) and Eq. (21)] is valid. Secondly, we notice that the two
curves in Fig. 5 feature slope breaks for the same diffraction angles. For example, in Fig. 5d,
for slits with l = 20μm and L = 100μm and λ = 0.5μm, one gets slope breaks for θdi f f 1 � 1.40

and θdi f f 2 � 0.290. The positions of these slope breaks, indicated by arrows, correspond to the
zeros of the two sinc functions that characterize each dimension of the slit [see Appendix 5,
Eq. (18)]. They depend on the width l and the length L of the slits according to : θdi f f 1 � mλ/l
and θdi f f 2 � mλ/L, with m a non zero integer.

We now compare the result of Eq. (3) with the intensity distributions created by distorted
Voronoi diagrams whose wall orientations are uniformly distributed over [0,π]. These Voronoi
diagrams are generated in the same way as those in Fig. 2, with a deformation factor a =

√
2.

Moreover, since Eq. (3) represents an ensemble mean over the possible wall orientations and
positions, we average the intensities diffracted by 100 realizations of such Voronoi diagrams.
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Fig. 6. Horizontal section of diffracted intensity pattern at λ = 0.5μm. Comparison between
Voronoi simulations and the theoretical model given by Eq. (3). For all slits, l = 5μm. For
the Voronoi simulations, the initial grid pitch is d = 100μm, a =

√
2 and R = 2mm. For

Eq. (3), L = 100μm for all the slits.

We compare on Fig. 6 the result of this simulation with the result of Eq. (3) for slits having
width l = 5μm and length L = 100μm. The number of slits has been chosen equal to N = 2340,
so that the sum of the areas of the slits is equal to the average area of the walls generated in the
Voronoi diagrams. We observe in Fig. 6 that the model leading to Eq. (3) gives us the behavior
of the diffracted intensity of a Voronoi diagram as the diffraction angle varies.

The diffraction halo observed when the Voronoi diagram is sufficiently distorted is thus cor-
rectly modeled by the diffraction pattern of a cloud of slits of constant sizes, random positions
and random orientations. Of course, this model cannot account for the residual diffraction peaks
observed in Fig. 6 since the positions and the orientations of the slits are assumed uncorrelated,
whereas it is obviously not the case in a connected Voronoi diagram. The next section will be
devoted to the study of the behavior of these peaks.

4. Model for the higher order peaks

In this section, our objective is to explain the disappearance and reappearance of the higher
order peaks when the deformation factor of the Voronoi diagram increases. We will first con-
sider the simple case of a one-dimensional grid and demonstrate that there exists a value of the
deformation factor for which the first order diffraction peak vanishes. We will then address the
problem of two dimensional grids, whose theoretical study is not easily tractable. We will show
by simulation that in this case, there is also a value of the deformation factor for which the first
order diffraction peak disappears.

4.1. One-dimensional case

Let us consider a one dimensional structure composed of an infinite number of cells with the
same length d separated by walls, as shown on Fig. 7. We assume that the transmittance of the
walls is equal to 1 and that of the cells to 0, which means that the walls are transparent and the
cells absorbing. The centres of each cell are then moved randomly so that their new positions
are xk = kd +αk, with αk random variables that are independent and follow a uniform distribu-
tion on [−α/2,α/2]. After this movement, the new walls are in the middle of 2 successive
new centres, at positions x′k = kd + α ′

k with α ′
k = d/2 + (αk + αk+1)/2, as shown on Fig. 7.

Our objective is to determine the diffraction pattern of this component at the focal plane of a
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Fig. 7. 1D Voronoi component.

lens of focal f . For simplicity’s sake, we assume that the walls are very thin. As a result, the
transmittance of the component is proportional to a distorted Dirac comb :

D(x) = e
∞

∑
k=−∞

δ (x− kd −α ′
k) (5)

where δ denotes the Dirac distribution and e is the width of the walls. The amplitude U(ν)
of the field in the focal plane of the lens is proportional to the Fourier transform D̃(ν) of this
transmittance, with ν = ξ/λ f and ξ the coordinate of a point in the focal plane. The expected
value of this amplitude is equal to :

〈U(ν)〉 = e
〈
exp(−2ıπνα ′

k)
〉 ∞

∑
k=−∞

exp(−2ıπνkd) (6)

where the symbol <> denotes ensemble averaging over the realizations of the random variables
α ′

k. Using the following well known identity relative to the Dirac comb :

∞

∑
k=−∞

exp(−2ıπνkd) =
1
d

∞

∑
k=−∞

δ
(

ν − k
d

)
(7)

and using the fact that the characteristic function of a random variable X is the Fourier transform
of its probability density function P̃X (ν) = 〈exp(−2ıπνX)〉, Eq. (6) becomes :

〈U(ν)〉 =
e
d

∞

∑
k=−∞

P̃α ′

(
k
d

)
δ

(
ν − k

d

)
(8)

where we have taken into account that the random variables α ′
k are identically distributed and

thus have the same characteristic function P̃α ′ . Since the random variables αk are uniform,
their characteristic function is P̃α(ν) = sinc(να) with sinc(x) = sin(πx)/πx. Moreover, since
α ′

k = d/2+(αk +αk+1)/2, we obtain :

P̃α ′(ν) =
1
2

exp(−ıπνd)
[
P̃α

(ν
2

)]2
=

1
2

exp(−ıπνd)
[
sinc

(να
2

)]2
(9)

As a result, Eq. (8) becomes :

〈U(ν)〉 =
e

2d

∞

∑
k=−∞

exp(−ıkπ)
[
sinc

(
ka
2

)]2

δ
(

ν − k
d

)
(10)
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Fig. 8. Average of the relative intensities on 20 realizations of 2D Voronoi components at
λ = 0.5μm. The initial grid pitch is d = 100μm, the length of the wall is e = 5μm, and
R = 2mm.

with the one-dimensional deformation factor a = α/d identical to Eq. (1). The kth order of the
intensity pattern is thus equal to :

Ok =
∣∣∣∣
〈

U

(
k
d

)〉∣∣∣∣
2

=
e2

4d2

[
sinc

(
ka
2

)]4

(11)

We notice that the intensity O1 of the first order peak is equal to zero for a = 2l with l integer and
l ≥ 1. The first annulation is given by α = 2d, that is, when the range of allowed displacement
α is the double of the period d of the initial grid.

4.2. Two-dimensional case

In the 1D case, we have been able to analytically explain the disappearance and reappearance of
the diffraction orders according to the deformation parameter a. For 2D Voronoi diagrams, the
theoretical approach is much more involved. Therefore, in this section, we will only perform
simulations and analyze their results. We will study the evolution of the first order as a function
of the parameter a for 2D Voronoi components generated as in Section 2 (see Fig. 2).

We plot on Fig. 8 the evolution of the relative intensity of the order 1 as a function of the
parameter a. If we denote (ξ ,η) the coordinates of a point in the focal plane, the relative
intensity E(ξ ,η) is defined by E(ξ ,η) = I(ξ ,η)/I0, where I(ξ ,η) is the intensity diffracted
by the component at the point (ξ ,η), and I0 is the intensity in the order 0 when the transmittance
is equal to 1 everywhere in the circular pupil of surface A, that is, I0 = A2/λ 2 f 2.

The curve in Fig. 8 has some properties in common with Eq. (11). It has several local minima
: the first one is situated at a = 1.27, and it seems that the others are situated closed to a = l
with l integer and l ≥ 2, which is similar to the 1D case. This result is consistent with what is
observed in Fig. 3f, where we can verify that for a = 1.27, we have a total annulation of the first
order peak. It is also consistent with the fact that for a > 1.27, the first order peak reappears
(Fig. 3h).

In conclusion, it is possible to cancel the main unwanted diffraction peaks and essentially
obtain a pure diffraction halo by a suitable choice of parameters in our simple technique of
generation of Voronoi diagrams. Starting with an initial square-shaped grid and using a uni-
form probability density function for the displacement of the grid centres may seem arbitrary.
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We have performed tests on various initial grid shapes (square and hexagonal) and different
probability density functions (a uniform distribution on a square of side [−α/2,α/2], a uni-
form distribution on a disk of radius r = α/2 and an isotropic gaussian distribution with a
standard deviation α) to displace the grid centres.

For all these deformation statistics, there is a specific value of the deformation parameter
a = α/d, which is in general different from 1.27, that leads to the disappearance of the higher
order peaks. The Voronoi grids obtained for these parameter values have the same properties :
uniform orientation of the walls and identical shape and level of the halo. We have not yet been
able to analytically account for that particular set of values of the parameter a in the 2D case as
we did in 1D, but we think that it is an interesting subject for further investigation.

The method described in this paper is intended to reduce the diffraction peaks and to replace
them by a halo. This is beneficial when SLMs are used for imaging purposes, such as in ac-
tive lenses, when the point spread function includes the order 0 as well as the higher orders. For
example when imaging bright point-like objects on a dark background the effects of the diffrac-
tion peaks can be very annoying. Of course, there are other applications like optical tweezers
where SLMs are only used to shape the order 0, and where higher order peaks may not be an-
noying. Although our method does not significantly increase the background noise around the
order 0, it does not serve a useful purpose in such applications.

5. Conclusion

We have proposed a simple way to design SLM grid structures that minimize the diffraction
peaks due to the periodic arrangement of cell walls. We have demonstrated that by starting
from a regular square-shaped grid and deforming it with the technique of Voronoi diagrams,
it is possible to completely cancel the main unwanted diffraction peaks for specific values of
the deformation parameter. For these values, the diffraction pattern only consists of an order 0
and of a slowly varying diffusion halo, which is much less annoying for the observer than the
diffraction peaks produced by a regular grid. We have shown that the halo can be ascribed to
the diffraction by randomly oriented and positioned segments. Tests performed on various grid
shapes and various strategies for the cell deformations lead to the same conclusions.

This work has many perspectives. In particular, we have assumed in this paper that all the
cells have the same phase. It would be interesting to study the case where the SLM implements
a phase function so that the phase value in each cell is different.

Appendix: Intensity diffracted by a random cloud of slits

We call fθk(x,y) the transmittance of one rectangular slit. According to Fig. 4, for a given
position (xk,yk) and a given orientation αk of a slit, the transmittance is given by Eq. (2). If we
now consider N slits, the output field of the component in the lens plane can be expressed as :

A(x,y) =
N

∑
k=1

fθk(x,y) (12)

With a good approximation, the diffracted intensity in the focal plane of a lens of focal length
f is given by :

I (ξ ,η) =
1

λ 2 f 2 ∑
k

∣∣ f̃θk (ξ ,η)
∣∣2 +

1
λ 2 f 2 ∑

k
∑

l,k �=l

f̃θk (ξ ,η) f̃ ∗θl
(ξ ,η) (13)

#128666 - $15.00 USD Received 21 May 2010; revised 18 Jun 2010; accepted 18 Jun 2010; published 1 Jul 2010
(C) 2010 OSA 5 July 2010 / Vol. 18,  No. 14 / OPTICS EXPRESS  15233



where :

f̃θk (ξ ,η) = lLsinc

[
l

λ f
(ξ sinαk −η cosαk)

]
sinc

[
L

λ f
(ξ cosαk +η sinαk)

]

exp

[
−2ıπ

λ f
(ξ xk +ηyk)

] (14)

with the function sinc(x) = sin(πx)/πx. Let us consider the ensemble mean of each term of
Eq. (13) over the realizations of xk,yk,αk. Let Px(xk), Py(yk) and Pα(αk) be the probability
density functions of the random variables xk, yk and αk with k ∈ [1,N]. We assume that the
3N random variables, xk, yk and αk are independent and that Px(xk) and Py(yk) are uniform
distributions on [−C/2,C/2]. Thus, the ensemble mean of the first term of Eq. (13) is equal to :〈

1
λ 2 f 2 ∑

k

| f̃θk(ξ ,η)|2
〉

=
N

λ 2 f 2

∫ π

0
| f̃θk(ξ ,η)|2Pα(αk)dαk (15)

According to Eq. (14), one has in cartesian coordinates:

| f̃θk(ξ ,η)|2 = l2L2sinc2
[

l(ξ sinαk −η cosαk)
λ f

]
sinc2

[
L(ξ cosαk +η sinαk)

λ f

]
(16)

Let us express this equation in polar coordinates (ρ,ψ) : ξ = ρ cosψ and η = ρ sinψ . One has
:

| f̃θk(ρ,ψ)|2 = l2L2sinc2
[

l
λ f

(ρ sin(αk −ψ))
]

sinc2
[

L
λ f

(ρ cos(αk −ψ))
]

(17)

Denoting, tanθdi f f = ρ/ f and ϕ = αk −ψ , one has :

| f̃θk(θdi f f ,ϕ)|2 = l2L2sinc2
[

l
λ

(tanθdi f f sinϕ)
]

sinc2
[

L
λ

(tanθdi f f cosϕ)
]

(18)

Since we assume that the orientation variable αk of the rectangular slits is uniformly distributed
over [0,π] : Pα(αk) = Pα(ϕ +ψ) = 1

π over [0,π] and 0 outside, one gets :
〈

1
λ 2 f 2 ∑

k

| f̃θk(ξ ,η)|2
〉

� N
λ 2 f 2π

∫ π

0
| f̃θk(θdi f f ,ϕ)|2dϕ

� Nl2L2

πλ 2 f 2

∫ π

0

sin2(πl
λ tanθdi f f sinϕ)sin2(πL

λ tanθdi f f cosϕ)
π4l2L2

4λ 4 tan4 θdi f f sin2(2ϕ)
dϕ (19)

For the ensemble mean of the second term of Eq. (13), since we assume that the orientation and
position variables are independent, one has :〈

∑
k

∑
l,k �=l

f̃θk(ξ ,η) f̃ ∗θl
(ξ ,η)

〉
= N(N −1)

∫ ∫ ∫ ∫ ∫ ∫
f̃θk(ξ ,η) f̃ ∗θl

(ξ ,η)

Pα(αk)Px(xk)Py(yk)Pα(αl)Px(xl)Py(yl)dαkdxkdykdαldxldyl

(20)

According to Eq. (14) and the fact that Px(xk), Px(xl), Py(yk) and Py(yl) are uniform distributions
on [−C/2,C/2], it reduces to :〈

∑
k

∑
l,k �=l

f̃θk(ξ ,η) f̃ ∗θl
(ξ ,η)

〉
= N(N −1)L2l2I2

a (ξ ,η)sinc2
(

ξC
λ f

)
sinc2

(
ηC
λ f

)
(21)
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with :

Ia(ξ ,η) =
∫ π

0
sinc

[
l

λ f
(ξ sinαk −η cosαk)

]

sinc

[
L

λ f
(ξ cosαk +η sinαk)

]
Pα(αk)dαk

(22)

Equation (21) is equal to 0 outside the center of the Airy function of the aperture, that is, for
ξ � λ f /C and for η � λ f /C. These considerations prove that the diffracted intensity in the
focal plane is given by Eq. (19) for (ξ ,η) �= (0,0). To conclude, Eq. (19) is always a valid
expression of the average scattered light intensity diffracted in the lens focal plane by the slits
cloud, except in a neighborhood of order 1/C near the origin θdi f f = 0. For θdi f f = 0, as the
transmittance of the slits is equal to 1 and the rest of the square has a transmittance equal to 0,
one gets :

〈I(0)〉 = |∑
k

f̃θk(0,0)|2 =
1

λ 2 f 2 |Nε|2 (23)

where ε is the surface of a rectangular slit. So, we will numerically estimate the integral of
Eq. (19) and we will determine separately the order 0.
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