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A very simple model has been developed to describe the diffractive properties of a crossed grating structure of
the refractive index formed by a thin transmission grating recorded in a Bragg reflector. When the Bragg con-
dition of the transmission grating coincides with the band edge of the reflection grating seen as a one-
dimensional photonic crystal, the diffraction efficiency and wavelength selectivity of the transmission grating
are highly enhanced and a Bragg diffraction regime can be obtained, even in very thin samples. The model can
be used to design micrometric very efficient new diffracting devices for optical signal processing. © 2009 Op-

tical Society of America
OCIS codes: 050.1950, 190.2055, 230.1480.

1. INTRODUCTION

Transmission gratings are widely used for optical signal
processing [1]. Their performances are nevertheless lim-
ited by the small refractive index modulation that can be
obtained in usual nonlinear materials. The thickness is
also an issue as it must not be too large if an integrated
device is wanted, although the diffraction regime associ-
ated with thin crystals is a Raman—Nath regime involv-
ing multiple diffracted beams. Besides the already well-
known simple [2-4] and double resonance [5-9] in a
Fabry—Perot cavity, a new approach using slow light at
the band edge of a one-dimensional photonic crystal (1D-
PC) was recently demonstrated to overcome these difficul-
ties, first in photopolymers [10] and then in semiconduc-
tor Bragg reflectors [11]. Results are especially attractive
in the latter case due to the high index contrast of Bragg
reflectors. The investigations concern the efficiency, wave-
length selectivity, and diffraction regime of thin low index
modulation transmission gratings when they are recorded
in a reflection grating and form a two-dimensional (2D)
structure of the refractive index. Huge performance im-
provements can be obtained when the read beam wave-
length and incidence angle correspond to the band-edge
resonance of the reflection grating seen as a 1D-PC and
satisfy the transmission grating Bragg condition. In this
paper, a very simple analytical four-wave model is pre-
sented in order to predict the diffraction properties of a
2D refractive index modulated structure and to enable
the design of optimized devices for various applications.
The crossed grating device considered in this paper is
described in Section 2. The analytical model used to study
its diffraction properties is developed in Section 3. Perfor-
mance enhancement predicted by the model for samples
exhibiting a high refractive index step modulation of the
reflection grating as seen in semiconductor Bragg mirrors
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for instance are presented in Section 4 as well as the most
favorable case of samples, where the 2D grating is depos-
ited on a mirror that combines the reflected and the
transmitted diffracted beams into a single reflected dif-
fracted beam. Finally, the influence of various parameters
on the diffractive properties of such samples is detailed.

2. CONSIDERED STRUCTURES AND
WAVES

The crossed grating structure has periodicities A, and A,
in the x and z directions, respectively (see Fig. 1). The in-
cident beam lies in the xz plane with a small incidence
angle 6p with respect to the z axis. The grating with
fringes parallel to the z direction diffracts in the so-called
transmission mode while that recorded with fringes par-
allel to x operates in the so-called reflection mode [12].
The periodic dielectric permittivity e(z,x) satisfies the
equation

e(z +pALx + peA,) = e(z,%), (1)

where p, and p, are positive or negative integers. For the
reflection grating, the Bragg condition (maximum reflec-
tion) is satisfied at \q for this incidence angle. However,
our aim is not maximum reflection as we wish to maxi-
mize the local field [13-17] to enhance the diffraction ef-
ficiency of the transmission grating. That is why the 2D
periodic structure is designed to operate at the upper
band edge of the 1D-PC, herein the reflection grating
(ABg>\g), when the read beam incidence angle 6 and
wavelength \gg satisfy the transmission grating Bragg
condition (Agg=2A,sin ). It should be pointed out that
the Bragg condition in thick transmission gratings usu-
ally ensures maximum diffraction efficiency, whereas
here in the case of thin samples, it merely means that the

© 2009 Optical Society of America
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Fig. 1. (Color online) Two-dimensional refractive index modu-
lated structure. In the x direction, the modulation is sinusoidal
with a period A,, and in the z direction it is a step modulation
made of N pairs of quarter-wave layers of respective indices n;
and ny, with a period A,. E;, Ep, E7, Epy and Epg are, respec-
tively, the incident, reflected, transmitted, diffracted transmit-
ted, and diffracted reflected waves.

-1 order diffraction angle on the transmission grating is
opposite to the incidence angle. In this way, both read and
diffracted beams can be enhanced through the band-edge
resonance of the reflection grating. This enhancement,
giving rise to a single diffracted beam, is possible only if
the initial diffraction efficiency of the transmission grat-
ing is low. Therefore, we only consider nanostructured
materials exhibiting a small refractive index modulation
in the x direction. The dielectric permittivity can then be
written as

&(z,x) = (2)[1 + m,(x)], (2)

where e(z) and m,(x) are periodic in the z and x directions,
respectively, (e(z+p,A,)=e(z) and m,(x+p,A,)=m,(x)<1).
Concerning the reflection grating having its wave vector
K,=27/A, in the z direction, we are interested in high in-
dex modulation step gratings as in multilayered Bragg
mirrors. The z dependence of the dielectric permittivity
given in Eq. (2) is then

8(2) =& for pzAz sz <pzAz +ey,

e(z)=¢ggfor p,A,+e1<z<(p,+ 1A, (3)

where e; is the thickness of the layer of dielectric permit-
tivity e;.

For the low modulation refractive index grating along
the x direction, m,(x) can then be replaced by the first
term of its Fourier expansion (an even function is consid-
ered here for the sake of simplicity without any loss of
generality)

m,(x) =m, cos(Kx) for p,A, <z <p.A, +ey,

m,(x) = m,, cos(Kx) for p,A, +e; <z <(p,+ 1A,
(4)

where K,=27/A, is the wave vector of the transmission
grating and m,; (i=1,2) is the permittivity modulation of
the transmission grating in the medium of refractive in-
dex n;= ;.
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3. MODEL

A. Description

Rather than use a “rigorous coupled waves” method
[18-21], where a large number of diffraction orders is
taken into account involving large computation times and
stability issues, the modeling of this multilayered me-
dium consists of describing the layers separately (Fig. 2).
Each dielectric layer is separated from its neighboring
layers by two interfaces where reflection takes place be-
cause of the dielectric permittivity discontinuity. More-
over, inside each layer, the recorded transmission grating
gives rise to diffraction. Our analytical approach of beam
propagation (including diffraction on the transmission
grating) is based on the nonlinear optics formalism,
where only the terms close to phase-matching are kept in
the propagation equation. We have then chosen to evalu-
ate how many diffraction orders can reasonably be non-
negligible in the considered structure. As demonstrated
hereinafter, the diffraction of an incident read wave E; on
the crossed gratings structure considered in our study
mainly involves four waves in the nonlinear medium (Fig.
2). As the medium with a periodically modulated suscep-
tibility can be considered as infinite in the x axis direc-
tion, perfect phase-matching is always achieved in this di-
rection, which determines the direction of the various
waves (Fig. 3).

ERgp; is the forward propagating read wave in the me-
dium of refractive index n;. Only TE polarization has been
investigated in this paper but TM polarization would not
make much difference considering the small incidence
angles used. For the reflection grating with a wave vector
K, the phase-matching condition gives rise to a single
backward propagating diffraction order Egrp; (reflected
beam) in which the direction is determined by the Des-
cartes laws at the interfaces between adjacent layers.

Forward and backward diffracted waves Egy; and Egg;
with wave vectors kgp; and kgg; originate from the -1 dif-
fraction order of Egry; and Egrp; with wave vectors kgrgy
and kgpg; on the transmission grating of wave vector K,,

111 113.62 lll
(1 (2)
Exg Ezs (1)
‘(\l) (2) &8
Eg; Esr g
S SF
I T .
[

Fig. 2. (Color online) Four main waves taken into account in the
crossed gratings structure are shown in one quarter-wave layer
with an index ny and a thickness e;=A,—e;. Each wave is repre-
sented by the direction of its wave vector. The matrix D, de-
scribes the diffraction in the layer and the matrices R, and Ry
the reflection at interfaces between layers.
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Fig. 3. (Color online) Phase-matching conditions for the four
main waves in the photonic crystal when the read beam is not at
Bragg incidence. The +1 diffraction order is also represented ex-

“@»
1

hibiting a much larger phase mismatch than the -1 order. The
subscript referring to the considered layer type (i=1,2) has been
omitted.

and the diffraction properties of the device can be accu-
rately described by using only these four waves as will be
justified later by computing the intensity of the strongest
phase mismatched diffraction order, the +1 order.

If the read wave incidence on the transmission grating
with respect to the z axis is 6g; (n; sin fg;=sin 6p) in the
medium with a refractive index n;, and the read wave-
length Agg, then the direction 6p_;; of the —1 order dif-
fracted wave in the same medium is given by the phase-
matching condition in the x direction (Fig. 3)

bp .= Arcsin[- \gg/(n;A,) + sin(6g;)]. (5)

At Bragg incidence on the transmission grating (sin(fg;)
=\gr/(2n;A,)) the symmetry between the read and -1 dif-
fraction order waves (6p_ =-0g;) provides them with the
same band-edge enhancement.

The propagation direction of the +1 diffraction order is

Op, i = Arcsin[Ngp/(n;A,) + sin(6g;)]. (6)

Therefore, it does not benefit from the local field enhance-
ment of the 1D-PC band edge. The very simple four-wave
model that is detailed hereinafter can be used either to
calculate the -1 diffraction order or the +1 diffraction or-
der, provided the right diffraction angles are taken into
account. The depletion of the read beam by the —1 diffrac-
tion order is not taken into account when computing the
+1 order, which leads to an overestimation of the inten-
sity of this higher diffraction order. It will be nevertheless
demonstrated that its intensity is very small compared to
that of the main diffraction order and that the Bragg dif-
fraction regime can be easily obtained in most situations.
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B. Matrix Resolution
In our analysis, the diffraction properties of the 2D device
are naturally described using a matrix formalism. A four-
dimensional (4D) vector is formed in each layer with the
complex amplitudes of the read wave, the reflected wave,
the diffracted wave, and the reflected diffracted (or dif-
fracted reflected) wave so that reflection on an interface
and diffraction on the transmission grating in one layer
can be represented by 4 X4 matrices.

At every interface between adjacent layers, the reflec-
tion matrix is deduced from the boundary equations [22]

Egp, Egy, 1 r; 0 0 Egr,
Ergg, Erg | 1|r;, 1 0 0| Ere
Eg, =Ry Esp, | ;|0 0 1 ry|| Esp, @
Egp, Esp, 0 0 ry 1 Esp,

where r;;=(n; cos §;—n;cos 6;)/(n; cos 6;+n;cos ;) and ¢;
=2n,; cos 6;/(n; cos 0;+n;cos 0;); n; and 6; are, respectively,
the refractive index and propagation angle of the forward
propagating wave in the layer number i.

To calculate the diffraction matrix, we use the reso-
lution of the coupled wave equations for the forward read
and diffracted waves and for the backward read and dif-
fracted waves:

(21?17l k;’ l’Tl'Anl

Fi= F
oz cos Og; " \cos Ori

ISw k!
+
oz cos Og;

8
iWAI’Li ( a)

- iAki)RFi =—Rp

&RBi k;’ l’?TAnl
+ Rpi=
oz cos Og;

Sg; ( k!

(8b)

-—+

: iAki)SBi = — Ry,
0z

\ cos fp;

cos Og;

where

9

{ERFi,RBi(z) = RFi,Bi(Z)eXp(iikRFi,RBi cos O;2)

Egp; spi(2) = S pi(2)exp(xikgp; gp; €08 Op;iz)

where An;=n;m,/2 is the refractive index modulation am-
plitude in a layer of mean refractive index n;, k;=2mwn;/\
is the common modulus of all wave vectors at wavelength
N, Ak;=|kgp;—kgrp;+ K| is the wave vector mismatch as-
sociated to the detuning from Bragg resonance on the
transmission grating, and the possible loss has been in-
troduced as the imaginary part k;=2mn]/\ of the wave
vector.

These two systems of coupled equations can be ex-
pressed in a matrix form

a8,(z)

=AiSi(z)7 (10)

where S;(z)=[R;(2),Rgi(2),Sri(2),Sp;i(2)]’ is a column ma-
trix and solved by diagonalizing the matrix A;, @;
=P;'A;P;, where P; is the base change matrix and @), is
diagonal. The solutions are in the form
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Si(z) =P,C:X;(2), (11)
where X is a 4 X4 diagonal matrix (x}”(z):exp(qj(f)z) for
j=1,2,3,4), and Ciz[c(li),cg),cg),cff)]’ is a column matrix
of integration constants.

The fields E;(z) =[Erri, Erpi> Esri, Espil’ =M;(2)S;(z) can
then be calculated using the diagonal matrix M; (m(li)(z)
= 1/m(2i)(z) =exp(ikgp; cos Og;z) and mg)(z) = llmff)(z)
=exp(ikgp; cos Op;z)). The four integration constants of the
matrix C; are then suppressed so that the field ampli-
tudes of the four involved waves at one boundary of the
considered layer i can be related to the field amplitudes at
the other boundary in a matrix form:

Egpi(z=0) Egpi(z=1)
Egpi(z=0) Egpi(z=1;)
RB i RB 12)
Egpi(z=0) Egri(z=1)
Egpi(z=0) Eggi(z=1)

The multilayer device can then be modeled by a matrix
product,

E, Ep
Ep . 0
0 = ROIDI[RIZDZRZIDI:' R12D2RZS EDT
Epg 0
Er
0
=Flg | (13)
0

where each layer pair is modeled by the product
R19DoR91D; and the input output interfaces matrices
have to take into account the indices of the external me-
dia, either air or a semiconductor substrate.

Using this matrix product, the reflectivity |Er/E;?,
transmission |E;/E;|?, and diffraction efficiencies pp
=|Epp/Ef|? and pp=|Epgr/E;|?* can be computed. The local
value of the field amplitude in the multilayered medium
can also be calculated. The first higher order diffraction
efficiency can be estimated in the same way and com-
pared to the main diffraction order.

4. RESULTS

To obtain a significant band-edge effect, semiconductor
quarter-wave layers as they are used in Bragg reflectors
have been considered. GaAlAs/AlAs [23] (2,;=3.184 and
ny=2.912) gives a permittivity modulation along the z
axis m,=11%, GaAlAs/Alox [24] gives m,=82%, and the
highest permittivity modulation considered here is m,
=125% with GaAlAs/air.

A. Reflection and Diffraction Spectra

As all structures exhibit the same general behavior, we
have picked up as a typical case the GaAlAs/Alox struc-
ture with the intermediate value of m,. Figures 4(a) and
4(b) show the reflectivity and the diffraction spectra of the
crossed grating structure. The center wavelength (\,
=1170 nm) of the reflection grating has been chosen so
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Fig. 4. (Color online) (a) Reflectivity of the 1D-PC. The two
semiconductors used are AlGaAs and Alox; there are 20 layer
pairs, the thickness is 5.5 um, the reflection grating period is
274.5 nm, and the band center wavelength is 1.17 um. (b) Dif-
fraction orders -1 and +1 spectra for the crossed grating device.
The two considered diffraction orders give rise to a transmitted
beam “DT” and a reflected beam “DR,” and the transmission
grating period is 8.6 um; the permittivity modulation along x is
3.1073.

that the upper band-edge wavelength is 1.5 um for tele-
com applications. The sample is made of 20 layer pairs,
and the period of the reflection grating is 274.5 nm. The
permittivity modulation of the transmission grating is
3.1073 and its period is 8600 nm. The -1 diffraction order
gives rise to a transmitted part and a reflected part, that
are almost equal, which reduces the diffraction efficiency
by a factor of 2. A sharp maximum can be observed at the
band-edge wavelength (diffraction efficiency of 16%); the
gain in diffraction efficiency is larger than 470 when com-
pared to the same grating if it was recorded in a homoge-
neous medium, giving clear evidence of the potentiality of
the technique. The full width at half-maximum (FWHM)
of this resonance is 1.9 nm, a very high wavelength selec-
tivity for a transmission grating. The +1 diffraction order
has also been plotted in Fig. 4(b), and the corresponding
efficiency is smaller than the —1 order by a factor of 20,
which confirms that the +1 diffraction order does not ben-
efit from the band-edge resonance and that a Bragg dif-
fraction regime can be approached despite the small
thickness of the device.

To increase the diffraction efficiency, a 100% reflecting
mirror can be added at the back of the sample so that all
the diffracted intensity can be concentrated in a single re-
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Fig. 5. (Color online) Reflectivity and diffraction efficiency (-1
and +1 diffraction order) of the crossed grating structure with a
100% reflection mirror at the back of the sample. There are 18
layer pairs, the total thickness is 7.6 um, the reflection grating
period is 274.5 nm, and the band center wavelength is 1.17 um;
the transmission grating period is 8.6 um; the permittivity
modulation along x is 3.1073,

flected diffracted beam. Figure 5 shows that 100% diffrac-
tion efficiency can be obtained in that case, even with a
thinner crossed grating device (only 18 layer pairs) than
in Fig. 4. The FWHM is down to 1.6 nm and the diffrac-
tion efficiency ratio of the main order to the higher order
is 32, showing that all diffraction properties are im-
proved.

B. Influence of the Structural Parameters
The next step is to calculate the effect of various param-
eters of the crossed grating structure on the diffractive

AlGaAs/AlAs

1
308
c
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Q
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2
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6 4
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Fig. 6. (Color online) Influence of the permittivity modulation of
the transmission grating with a AlGaAs/AlAs reflection grating
of 60 layer pairs.
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Fig. 7. (Color online) Influence of the number of layer pairs of
the AlGaAs/AlAs reflection grating when the permittivity modu-
lation is m,=4.107%,

properties. The maximum diffraction efficiency deter-
mines the insertion loss of the device, the width of the
resonance at half-maximum (FWHM) gives the wave-
length selectivity, and the diffraction efficiency ratio of —1
order to +1 order R=pp_1/pp.1 reflects the diffraction re-
gime of the device. For the transmission grating, index
modulation and thickness are the most important param-
eters. Figure 6 shows the influence of the permittivity
modulation m, for a given thickness L=14.3 um in the
case of the AlGaAs/AlAs structure. Diffraction efficiency
increases with m, as expected from Kogelnick’s theory for
a transmission grating. At the same time, the FWHM also

AlGaAs/AlAs

Diffraction efficiency
o
o
N
FWHM (nm)

Pp-1Pps1

o 1 1 1
0 0.2 0.4 .6 0.8 1
n"i/ni (x107)

Fig. 8. (Color online) Influence of loss when the permittivity
modulation is m,=8.10"* with a AlGaAs/AlAs reflection grating
of 60 layer pairs.
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Table 1. Influence of m, Optimization of the Other Parameters to Obtain Maximum Diffraction Efficiency

L )\0 m, PDR-1 FWHM
Materials m, NN (um) (um) (X1073) (%) (nm) PoR-1/ PDR+1

AlGaAs/AlAs 0.114 60 14.3 1.45 1 95.6 11 42
AlGaAs/Alox 0.822 15 4.1 1.166 4.5 95.4 14 14
AlGaAs/Alox 0.822 20 5.5 1.171 2 94.2 1.1 66
AlGaAs/Alox 0.822 25 6.9 1.173 1.1 95.3 0.6 215

AlGaAs/air 1.247 10 3.2 0.96 8 95.1 4.3 8

AlGaAs/air 1.247 15 4.8 0.969 2.7 96.8 14 65

AlGaAs/air 1.247 20 6.4 0.972 1.1 93.6 0.6 365

increases while the diffraction efficiency ratio of =1 to +1
order decreases when m, increases, which is not satisfac-
tory for an effective device. This shows that the 2D grat-
ing is advantageous only in the case of low index contrast
transmission gratings. As predicted by previous works
[12], another way to increase diffraction efficiency of a
transmission grating is to increase its thickness, and Fig.
7 confirms these results for the crossed gratings structure
as the diffraction efficiency, the FWHM, and the diffrac-
tion efficiency ratio of orders —1 and +1 are improved
when the number of layer pairs N is increased. In this
case, all diffractive properties are improved. The 100%
diffraction efficiency can be obtained with the thickest
sample made of 90 layer pairs if the index modulation
along x is 4 X 104, The linewidth is stable beyond 60 layer
pairs and does not decrease significantly under 0.5 nm.
The same value N=60 is also the threshold thickness to-
ward the Bragg diffraction regime as the diffraction effi-
ciency ratio of —1 to +1 order goes over 100. In an actual
device, losses must be taken into account even though
they may be very low. Figure 8 shows the drastic effect of
these losses as they are also enhanced by the band-edge
resonance [17]. The diffraction efficiency decreases very
steeply and the quasi-Bragg diffraction regime is rapidly
lost while the linewidth increases moderately. A very high
quality is therefore needed for this device.

C. Influence of the Material

Semiconductor Bragg mirrors can be made of various re-
fractive index contrasts, depending on the chosen materi-
als. For the 2D grating the index modulation along the z
axis determines the intensity and the sharpness of the
band-edge resonance. Table 1 shows the influence of the
permittivity modulation along z. For every value of m,,
the remaining parameters have been chosen in order to
obtain a diffraction efficiency close to 100% with a realis-
tic number of layer pairs. When m, increases this maxi-
mum value of the diffraction efficiency can be achieved
with less efficient or thinner transmission gratings. In
most cases, the diffraction efficiency ratio of -1 to +1 dif-
fraction order is well above the traditional value of 100
considered as the lower limit for a Bragg diffraction re-
gime, which is all the more remarkable as the approxima-
tion of the undepleted read beam we have made to calcu-
late the +1 order diffraction efficiency leads to a strong
overestimation of this diffraction order when we are close
to a 100% diffraction efficiency for the —1 order. These re-
sults on higher order intensity validate the very simple
four-wave model that has been used for this paper and

confirm that a high efficiency diffraction device can be
made, even at a micrometric scale.

The optimization could also be made on wavelength se-
lectivity rather than diffraction efficiency criteria with
this model, which would of course give different param-
eters. These calculations show that, using this very
simple model, the crossed gratings structure could be eas-
ily tailored to a given function as for instance wavelength
filtering or beam steering and optimized according to the
desired performance. Let us also emphasize that the pro-
posed technology for the implementation of the crossed
grating structure is already fully mastered for
semiconductor/semiconductor Bragg mirrors. The devel-
opment of AlGaAs-Alox or semiconductor-air structures
deposition techniques is almost complete.

5. CONCLUSION

A simple analytical model has been presented that pre-
dicts the diffraction properties of a crossed grating device
forming a 2D photonic refractive index modulated struc-
ture. Diffraction efficiencies very close to 100% can be ob-
tained as well as high wavelength selectivities and a
Bragg diffraction regime, despite the very small thickness
of the samples and the low index modulation of the trans-
mission grating, provided optical losses can be minimized.
This model can be used for the design of very efficient new
micrometric diffracting devices for optical signal process-
ing applications.
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