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Operation of a quantum phase gate using neutral atoms in microscopic dipole traps
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3Scientific Center of Applied Research, JINR, Dubna, Russia
(Received 25 September 2001; published 15 April 2002

In this paper we propose and analyze various operating regimes of a quantum phase gate built on two atoms
trapped in two independent dipole traps. The gate operates when the atoms are excited using a two-photon
transition from the hyperfine manifold of ground states up to Rydberg states with strong dipole-dipole inter-
action. Experimental requirements are discussed to reach énfasbseconglgate operation.

DOI: 10.1103/PhysRevA.65.052301 PACS nuntber03.67.Lx, 32.80.Pj, 32.80.Rm, 34.6

[. INTRODUCTION selectively couple one of the hyperfine sublevels to a igh-
Rydberg state by using a direct two-photon transition involv-
The manipulation of individual quantum objects, such asing a pulsed blue laser and the trapping beam. Analyzing the
atoms, ions, or photons, opens the way to controlled engieperation of such a quantum gate requires first to study the
neering of a quantum state of small sets of trapped particleslipole-dipole interaction in Rydberg states, which is the ba-
in order to encode and process information at the quantursic physical mechanism for atom-atom coupling, as well as
level. Recent achievements in this direction use eithethe multiphoton absorption in a time-dependent laser field,
trapped iong1-3] or trapped photons in cavity QED sys- which is required to reach Rydberg states. We will also pay
tems[3,4]. A third possibility, which has been actively stud- attention to limiting factors related to the limited lifetime of
ied theoretically[5,6], is to use trapped neutral atoms. From gy qherg states, and to the deleterious effects of thermal pho-
the experimental side, we have demonstrated recently that jt . absorption, photoionization, and interatomic distance
is_ possible to_Ioad and d_etect indivi(_jual atoms in an OptiCafluctuations. These problems will be treated using several
dipole trap with a _submlcrometer si@]. Due to the ex- pproximations in order to obtain analytical results whenever
tremely small trapping volume, only one atom can be Ioadeél :
at a time, resulting in strongly sub-Poissonnian statistics oPOSS'b.Ie' The relevgnt parameters values, S.UCh as laser fre-
quencies, powers, interatomic distances, will be chosen to
atch what is accessible experimentdl®l. The Rydberg

the numberN of atoms in the trap. Moreover, by sending
another trapping beam at a small angle in the same optic _ ) ; ) .

ﬁtate evaluations will be carried out using spectroscopic data
and formulas found in the literature.

we have trapped two atoms at a controlled distance, whic
The paper is organized as follows. In Sec. Il we recall the

can be adjusted in the range 1-10m (see Fig. 1L The
dipole trap is initially loaded from a very low density =1 ,
magneto-optical trapMOT), which cools the atoms and al- general definition of a quantum phase gate and we describe
lows us to detect them easily from the induced fluorescencd!oW it might be implemented in our set(i]. Section IIi
The presence of one atom in the trap can be detected withifitroduces some expressions, approximations, and numerical
less than 1 ms, and then by turning off the MOT the atomparameters used in the paper and studies one-atom opera-
can be kept in the trap for several seconds, with a very lowions. In Sec. IV we examine the dipole-dipole interaction for
fluorescence rate. This setup opens possibilities to explorBydberg states, which is the basic ingredient for the two-
various proposed schemes for atom-atom entanglement, sugiubit gate operations. Section V contains the main results of
as controlled cold collisiong3] or atomic dipole-dipole cou- the paper and is subdivided into three sections. In Sec. VA,
pling [9]. the general equations for the two-atom operations are de-
In this paper we will investigate more quantitatively sev-rived and then simplified for two cases of particular interest.
eral schemes derived from the fast quantum phase gate thiat the first case, the resonant excitation is possible for one
has been proposed in R¢fLO0]. In this proposal, the qubits atom only, while the simultaneous excitation of two atoms is
are implemented by using hyperfine sublevels of the atomiguppressed due to the dipole-dipole interaction. In the second
ground stat¢5,6,11], and rotations in the one-qubit subspacecase, the two atoms can be excited together only, while the
are achieved by inducing Raman transitions between thessne-atom excitation is nonresonant. The first case is analyzed
sublevels, separated hyg/2m=6.83 GHz for 8'Rb. Fast in greater detail in Sec. V B for a “square pulse” shape of the
(microsecond operation can be achieved by using the trap-exciting laser field. The advantage of this case is in the low
ping laser itself as Raman beams, together with a pulsegensitivity to fluctuations in the interatomic distance. The
control beam, addressing each atom, and detuned from thlsecond case is analyzed in Sec. VC, it leads to a specific
trapping beam by [12]. For two-qubit operations, one can “self-transparency” regime of the interaction of two atoms
with the field. The sensitivity of this regime to small fluctua-
tions in the interatomic distance is discussed. A final discus-
*Corresponding author. Email address: sion about advantages and disadvantages of each regime, and
philippe.grangier@iota.u-psud.fr experimental perspectives, is presented in Sec. VI.
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FIG. 2. Preparation of the initial states of Rb atoms using one-
qubit rotations. It is assumed that the Raman transitions can be
driven independently for each atom.

ing some statefy), |e) of an atom as the qubit states, the
single-qubit rotation can be easily obtained by inducing Rabi
oscillations in the|g)—|e) transition. Thus, an important
problem for implementing a quantum computer is designing
a conditional quantum phase gate, which transforms the two-

! qubit statela)|b) according to[4],
|a>|b>_)exqi¢5a,95b,g)|a>|b>v )
where|a), |b) stand for the basis stat¢s) or |g) of two
qubits andsy, 4, 54 are Kronecker symbols.
Here the two qubits will be encoded on the ground hyper-
fine sublevels of two®’Rb atoms trapped in two separate

optical dipole traps. We assume that for each atdm (

) . ~=1,2), Raman transitions between the upper stajg(F
FIG. 1. Fluorescence signals from atoms trapped into two neigh-_ 2) and the lower stat|&3)k (F=1) of the hyperfine mani-

boring independent dipole traps. The fluorescence is induced bf’old of the lowest ,,, state can be driven independently

th'cal molasses be&.‘ms that are always switched on to take th‘?/\/ith the help of additional fields of frequenciess, which
pictures. Each square is a pixel of the charge coupled device camera

and corresponds to a size of Am in the atom’s space. The top are detuned from the trapping field frequensy,, by wr

picture shows two-dimension&2D) images corresponding to no _(‘t’)tfaP:w.F [12], as shIC)yvnhln Fig. g ThlsfprOV|des Qne-f
atom(a), one(left or right) atom(b),(c), and two atoms in the traps qubit rotations. Our goal is then to obtain a fast operation o

(d). The bottom picture shows a 3D reconstruction of the ﬂuores-the conditional quantum gate transformatidn, which can

cence signal from two trapped atoms. Dark regions correspond tB€ realized under the experimental conditions & With
lower fluorescence signal. respect to previous proposdls, 6,15, we avoid the need of

keeping atoms in highly excited Rydberg states as well as the
fine level tuning using a constant electric field. However, it
will appear that compromises are necessary anyway, and dif-

In this section we recall the definition of a quantum phasdérent possibilities each with some advantages and disadvan-
gate and present a possible implementation of such a gaf@ges will be examined. _
using two 8’Rb atoms trapped in two separate dipole traps. _ The transformation(1) can be performed in two steps.

A quantum computer, described by the wave functionThe first step involves awo-atom operationThe atoms in
|W)=3"_,A k), carries out a unitary transformation in the States|g) are excited to Rydberg states using a light pulse
Hilbert space of its state) and transforms the initial state @Nd then driven back to states), with some phase shift.
vector{A", ... A" which contains the initial data, to the Vhile the atoms are in the Rydberg states, they are strongly
final state vectofAS"", ... ,A%“% which contains the result. coupled through a dipole-dipolel{d) mterr]acn?n. The atoflf“ns
Any computer is a combination of many “universal logical in [€) state are not eXC"’?d and are, therefore, not a ec_ted
elements.” and, in principle, a quantum computer can béoy d-d interaction. After this the two-atom operation step in

built from only two different kinds of elements: the condi- the state evolution is

tional quantum phase gate acting on two qubits and the arbi-

trary rotation gate acting on one qubit. With these gates one |a)|b)—exp(—i¢@gd, g—i¢odp gt 1¢8a g g)la)|b).
can construct an arbitrary unitan n matrix [13,14]. Tak-

Il. FORMULATION OF THE PROBLEM
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1 3 3361826 cm' time. The time-varying field is a pulse of “blue” light that
""""" A2 can be obtained either from a pulsed tunable laser or by
i “chopping a slice” from a continuous laser using a fast
i modulator. Numerical calculations will be done wikh,,e
A =472.7 nm (argon ion laser ling interacting with the
;e |5p12)—|42s) transition. It is to be noticed that the blue
12816.56 cri' light excitation is applied simultaneously on both atoms.
5y 12 P ) Therefore tight focusing is not required and the “blue” beam
"""" A, 12578.96 el waist may be larger than the interatomic distance. The two-
photon transitio5s)— |42s) is analyzed in Appendix I, and
L. the two-photon Rabi frequency is
581 L2 1023 cm’ Q _ QtraprIue(t)
ﬁ— 0 Cm_l Z(t) - 2A1 ' (4)

FIG. 3. Two-photon transitions to the Rydberg state of b where (), and Qy,¢(t) are the Rabi frequencies of the
atom. trap and the blue fields, respectively, afg is the detuning
) ) ) from the one-photon resonance in tHes)—|5pq,) transi-
The second step is@ne-atom operatiorwhich changes the tjgn. For single-atom operations we assume ta(t)/A
phase of the single-atom stafig), in the absence ofi-d <1 and everywhere belowy<wg, so that we can neglect
interaction between atoms, and does nothing with the statg,e population of thé42s) state and the interaction of the
|e)k, so that field £(t) with atoms in the statée), . As long as the dura-
)| b)— €XPli 008 g+ ¢05.g)]a)]b). 3) tion of the pulser is much shorter than the spontaneous

emission lifetimer(;”™ of the|42s) state, the time evolution

The purpose of the two-atom operation is to create the corf the|g)y state is simply a phase shift that can be written as
ditional (state-dependentiphase shift required by Ed1), - 02(t)

while the one—atom operation will compensate unwanted |g>keXF<_f 94(t’)dt’), where Q4 (t)= 2D
phase offsetgy, which occur at the two-atom stage. Though 4o A

there may be simpler ways to obtain single-atom phase (5)
shifts, for the uniformity of theoretical and experimental _ ) ) )

treatment all these operations will be obtained from the tran] NiS evolution performs operatiort8) with
sient excitation of(the samg Rydberg states. We first de-

. : ) ; : 1t
scribe one-atom operations, which are easier to implement. (’DOZZJ Q,(t)dt’. (6)
0

lll. ONE-ATOM OPERATIONS Let us estimate the values of parameters necessary to satisfy

Here we estimate the values of various parameters that are< Tg‘,'fs) . The oscillator strength for ths)—|5py,,) tran-
necessary for the realization of the one-atom operati8hs sition is f5s5,~1/3 and we calculated the oscillator strength
in our experimental conditions. Similar parameter values willfor the |5p,,,)—|42s) transition to bef 5405~ (5/3) X 10°®
be utilized in the rest of the paper. (see Appendix B Let us suppose that the blue field is a

The operation$3) can be carried out by the interaction of “square pulse” so thaf),e is constant in the time interval
atoms with a pulse of light, which is close to resonance withr. Taking the cross section and the power for the trap and
the transition betweefg) and some excited state, but much blue beams asSm,”,:lO*8 cne, Pirap=10 mW and
further away from resonance with any transition fromftle  Sy,e=10° cn?, Pp,.=0.5 W, respectively, we estimate
state. The last condition can be easily satisfied because of th&,,~5X 10" s™! and Qp,~10° s™'. Supposing ¢,
large difference in energies between fle¢ and|g) states, ~= and takingA=10" s ! [so that 2),(t)/A=0.1<1],
we/2m=6.83 GHz. For all numerical calculations we will we obtain that the duration of the pulse carrying out the
use the two-photon transitidg),— |5p1/2)—|42s), shown  transformation3) is 7~10 us. This value is indeed signifi-
in Fig. 3, but other choices may be possipié]. cantly shorter thanriy~120 us, which is our estimation

The two-photon transition can be described using an “effor the spontaneous emission time of thes 42ate. We point
fective” coupling field £(t) =3[ Q,(t)e'“'+c.c], where out that thermal photons may reduce significantly the effec-
=wo—A/2, wqis the|g),—|42s) transition frequency for a tive lifetime of the Rydberg states, and we assume that ap-
single atom in free spacé/2 is the detuning from the two- propriate cooling and/or shielding is used to eliminate them,
photon resonance, and,(t) is the two-photon Rabi fre- though this may be a significant practical problgh®]. In
guency. One of two fields participating in the transition is theAppendix C we also show that the probability for the Ryd-
optical dipole trap field oh,,=802.3 nm interacting with  berg state to be photoionized by the strong trapping field can
the |5s)— |5p4) transition(it is assumed that other transi- be kept reasonably small. Therefore, apart from the influence
tions from the|5s) state are further off-resonance and can beof thermal photons, the conditions for the one-atom opera-
neglectegl The amplitude of the trapping field is constant in tions can be easily satisfied in the experiment.

052301-3
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33620.15 cm - 42p> shifted due to thel-d interaction(see the bottom part of Fig.
— 4). For atoms innp,a) and|n’p,a’) states witha # o' the
dipole momenta ohs—n'p transitions are perpendicular to
3361826 cm© | | M2s> each other. There are 12 such states, they are not shifted and
4x__ have energyE,. For describing the other states it is conve-
. ' nient to define
3361638 cm | | 41p>
|s) =|425)1]42s),, (8)
I42p>1 I41p>2 , |41p>1 I42p>2 4¢_
E, V. T T - |Xo) = (1N2)(|41p, a)1|42p, @), — |41p, @),|42p, @)1),
0,=0.01cm {Add )
B
b lv_> |#a) = (12)(|41p, )] 42p, ) o+ |41p,a>2|42p,a>1)( 0
10

FIG. 4. Rydberg states of singféRb atom(top) and two-atom

states(bottom). where a=x,y,z. The dipole momenta of transitions from

|42s),|42s), to |41p,a),|42p,a), and to|41p,a),|42p,a),
states have opposite phases, so that the three antisymmetric
states| x,) are “dark states.” Among other states, it is easy
In order to proceed with the analysis of the two-atomto check that the vector (@)(|l//x>—|¢y>) is also un-
operations we have to determine the states of two atomeoupled, because of the symmetry @fd interaction with
spatially separated by a few microns, when the atoms areespect to the rotations of the coordinate system around axis
excited to Rydberg states and coupled by a stahinter-  z Finally the general expression of the coupled states is
action. Let us consider thd1p), |42s), and|42p) states of
Rb atom ;hovyn in the .top part of Fig. 4. F_or simplicity we [9)=Ad )+ Al + A, |h,), (11)
do not distinguish the fine and the hyperfine structures of
Rydberg states, though the fine-structure splitting of the 42 _
state is~0.047 cm! [17], and it should be taken into ac- wh_?;]ee| lﬁlf';mﬁ%fa)éwoxf) j:rlewyi\)/\}o-atom svstem i =H
count for more precise calculations. In the numerical evalu-+v whereH- is the enerav oberator )i/n the absenge of
ations we use the average weighted energies of Rydberg d-d> o0 gy op ,
-d interaction, with the diagonal matrix elements
states presented (18] Ee=(ydHol ) =67236.52 cm and E,=(4|Hol i)
Since the transitiont1p)— |42s) and|42s)—|42p) are S M\ s OYS/ ) ' p\Fal’ 0P
=67236.53 cm~. The operatoV 4.4 describes tha&-d in-
nearly resonant, the two-atom staté42s),/42s), are

teraction. Since the resonant wavelengta0.5 cm for the
coupled to the stateidlip),|42p), and|42p),|41p), due to transitions between the Rydberg states is much larger than
the resonantl-d interaction, which mixes these bare states

and leads to new two-atom states. Let us find the coupIque typical distance between the two atoms, one can consider

states in terms of atom eigenstates withdud interaction. a staticd-d interaction with the energy

We introduce a coordinate system with axidirected from .. .. .

atom 1 to atom 2. Following the approach [@0] we con- _papg (pgT)(ppr)

sider the|n,p,«) basic statesq¢=X,y,z, which correspond B 5 '

to the dipole momentum of atom transitions directed along

X, Y, and z axes. Such states are linear combinations of - N~ A a )

usual states with magnetic quantum numbers0,=1. The ~ Whereuw={uxi, sy, 24 is the operator of the dipole mo-

general expression for the wave function of a two-atom staténentum of the transition of atolk=1,2 andr is the radius

is vector from atom 1 to atom 2. The nonzero matrix elements
of V4.4 are thus

IV. DIPOLE-DIPOLE INTERACTION BETWEEN
RYDBERG STATES

(12)
r

|(//> =AS|425>1|423>2+ a,ﬁzzx,y,z Aa'ﬁ|41p’a>l|42p”8>2 <l/’x,y|vd-d| ‘/’s>:<‘r//s|vd-d| l/’x,y>* = \/Eﬁrd.d )
+ BE B..sl42p,a)1|41p,B),. (7) (ol Vaeal sy = (sl Vaal ¥r,)* = = 2/2hT g4,
a,p=X,Y,Z

= * =
In Eq. (7) there are 18 two-atorp states and ongstate. The (01 Vol o) =(WalVaa 9)" = 2A T g,

s state|42s),|42s), always interacts witlp states, so that R

there are no nonshifted states with the enefgy On the ~Where il q.q= waipar/r3, par= (41D, alitt ol 425, )y,
other hand, most of thp states do not participate in thled  w4,=(42p, a| it | 425, @)y for k=1,2. One can then find
interaction and have the energy, while some of them are three eigenstates fa,

052301-4
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[p) = V21, )+ (1N2)] )] (13 ws 5
and
o) =ally) ¥ &2l -lw )], (4 o a0

where

£ =2T% [8o(1+0)], &,=2T%4(8,0), > m

a.=[1+3[£.[77H
and 92/21/2
0= (1/12)[ V1+48(|T 4.4/ 55)*—1]. (15)
G ———1

The state{y,) has energyE, and the statef)..) have, re-
spectively, energie€, =E+7Aq4 and E_=E;—7%Ayq FIG. 5. Level scheme for two atoms with the resonant interac-
where Ay 4=3060 and 7 dy=E,—Es=0.01 cm . These tion. The bold dashed line is the position of the two atomic excited
states are well separated, becausg,>1.2x10" s~ for state without the dipole-dipole interaction.

the typical interatomic distange<5 um (see Fig. 4, which

is much larger than the Rydberg state lifetime. It can also be e consider now two atomis= 1,2 (prepared initially in
seen easily that for=1 um the admixture ofys) in [_)  |g) states that strongly interact during the two-photon tran-
is much bigger that iny ), and thus the two-photon transi- sjtion |9)k— |5p12k— |42s), and back, when atoms pass
tion to the Rydberg states, which occurs through), is  through Rydberg states. When both atoms are excited to their
maximum for the¢_) state. Since this state with enery  Rydberg states we have to consider the states of the two-
is also well separated from the other ones, we will considegtom system determined in the preceding section. There are
below that only|y_) is involved in the interaction of atoms three two-atom states that participate in the interaction with
with the two-photon field. This state is essentially the initial the field: the ground stal€) =|g)1|g),, the symmetric state
nondegenerate two-atom stdte) down-shifted by thed-d
interaction(see Fig. 4. .

In the calculations above we neglected the retardation in _
the d-d interaction. In a first approximation the retardation 1= E(|425>1|g>2+|g>1|428>2)
leads to additional broadening of transitions participating in
the d-d interaction, which is related to the van-der Waals )
interaction between atoms. We estimated that the broadeniffjth only one atom excited, and the two-atom Rydberg state
due to the van-der Waals interaction is two to three orders of¥/-) determined by Eq(14). The energy levels dG), [1),
magnitude weaker that the spontaneous emission broadeni@§d|#-) states are shown in Fig. 5. The antisymmetric state
of any Rydberg state considered here, therefore it can bWith one excited atorfisimilar to Eq.(16), but with sign—]
neglected. Though the calculations carried out in this sectiognd the nonresonant two-atom Rydberg states do not partici-
are only approximate, because we did not take into accouri@te in the transition. The two-photon Rabi frequefibyis
the fine structure of Rydberg states, the states, energies, afiyen by Ed.(4).
matrix elements found above should provide a good starting
point for evaluating the experimental parameters. A. General equations

(16)

The effective Hamiltonian for the three-level system
shown in Fig. 5 is

This section presents the analysis of the two-atom gate
operations. Firs_t we deriye a general three-level model for H=H,— f 2 [Q(Zk)(t)ei(wt-%—oo)_l_c_c_], (17)
the gate operation in a time-dependent coherent figkt. 252
V A). The complete analysis of that model will be carried out
elsewhere, here we will be focused on two practically inter- K . . . .
esting cases where the calculations can bepdone us%ng th_hereQ(Z () s areal functl_o n of t'meﬂo. Is a constant,
level approximations. These two cases correspond to excitinﬁnd ®=wiap+ Opiye. The (diagona) matrix elements of
either the one-atom resonant@ec. VB or the two-atom Ho af‘i<G|Ho|G>:01 (1|Ho|1)=tw(t), and(g_|Ho| )
resonancéSec. V Q: the frequency shift between these two =#A[2w(t) —Ay4]. It is shown in Appendix A that
resonances is just the effect of tthal interaction. As we will
show, in the first case the gate operation is much less sensi- 02 02, (1)
tive to small fluctuations in the interatomic distance than in o(t)=w, _trap 7bluet’]
the second case; this will be discussed in Sec. V C. 44,4 47,

V. TWO-ATOM OPERATIONS

052301-5
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wherewy is the frequency of the two-photon transition for a where
single atom in free space, and the two other terms are due to
dynamical Stark shifts of the two-photon transitions. The

Q
— 2 ~ >
coupling matrix elements are 1ma~ 5l ~Aee>A (29

Qs =Qs(t) 5

(GlaP|1)=(1]0P|G)=0,//2, Equations(22) describe a two-photon transition to the two-
atom state with only one excited atom. With the condition
<1|Q(2k)|¢7>:<¢7|Q(2k)|1>:()2a7/\/E_ (18  (21) the state with two excited atoms is never populated,
however the presence of this state leads to a Stark shift. Here
We suppose that the typical evolution rate of the system ithe dipole-dipole interaction “removes” the state with two
greater that the spontaneous decay rate of the Rydberg stategcited atoms from the interaction with the laser fields die to
and we neglect spontaneous emission. We write the wave dipole blockadé21].
function of two atoms In the second case we suppode=A4.4> 48, assuming
, _ again that inequality21) is verified. By eliminating adiabati-
| ) =A|G)+Ce '(@t+ )| 1)+ Be 2@ty ), 19 cally C from Egs.(20) we obtain

- Qy(1)
and insert it into the equatiorfid|,)/dt=H|,), neglect- iA=——="(A+a_B),

ing the fast-oscillating terms. After this we obtain the set of 2
equations for coefficientd, C, andB,

o Qy(t)
B=—[5+0u(D]B—a —5
_ Q,(1)

N where(), is determined by Eq5). Equations(24) describe
the four-photon transition from the lowest state to the highest

(A Qu) Q,(t) state of the two-atom system afiyj, is the four-photon Rabi
[ Z[E— 5 } —W(a—BﬂLA), (200 frequency. The state with one excited atom is out of reso-
nance, it has a negligible small population, however it leads

to a dynamical Stark shift of the transition.
iB=—[5+Qst(t)]B—a_ Qz(t)c, The sollutions of Eqs(22) qnd (24) will be found and
J2 analyzed in the following sections.
where B. “Square pulse” excitation and gate operations with only
one excited atom

(A+a_B), (24
iA=

6=Agq— A, AR=wy—w+Q/2,
1. Gate operation

Q=00,,/(241), Q) =0, (1)/(24y). Let us consider the case described by Egg). The de-
L ) tuning 6~A 44, Which depends on the distance between at-
We note that the value df is fixed and determined by, oms, appears only in the dynamical Stark shift in E2p).

andwpue, While the detuning’ varies due to fluctuations in - o eligble gate operation it is important to reduce the in-
the interatomic distance. In general, E®0) can be solved g ence of fluctuations o6 due to possible variations of the

only numerically. However one can find analytical solutions jiciance between the atoms. This takes place when
at least in two special cases, where E@§) can be reduced

to equations for an effective two-level atom. a2 a2 Qtzrap
In the first case we supposA<d~Ay4 and also A= oA A, K<l (29
. : d-d 12d-d
Q4(1),Q,(t)<Ay4. Taking into account that for our values
of parameters) ;> Qpue(t), these requirements can be j e when thed-d interaction is large enough, so that
reduced to the condition 0. ()~ (1)
S S .

_ A simple analytical solution of Eq$22) can be found by
Qo)A =K <1, 21

2(D/Aaa=Ks @D assuming that the blue field is a square pulse, that is,
Supposing that the inequalit{2l) is fulfiled we can adia-

batically eliminateB from Eqs.(20), leading to equations for Opuelt)=const,  O<t<r,

an effective two-level atom QuueH)=0, t<0, t=r. (26)
. Q,(1) The approximation(26) is correct when the time of the in-
IA=— 2 7 crease(decreaseof Qpue(t) from 0 to its maximum(and

back is much smaller than the pulse duratienwhich is
about 10 us as we will see. This is easily achieved in prac-
A, (22)  tice using fast modulators. Assuming th@(t)=£, and
2 QOg(t)=Qg are constant in Eq$22), we find

A Dy (D)
oo[2 Dt
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) \o Under this condition
A(t)=e Mot Cos()\lt)+i)\—sin()\lt) , (27
1 27
Tm=Q—\/m2— n%,  @u=m(m=y2nZ-m?),
i, 2
C(t)=——e ™osin(\,t), (28) o
V2), $=o,=m(n=\2n2—md), (35)
where so that the transformation of the two-atom states is
A—Qg 1\/(A_Qst)2 ) le)|e)—|e)|e),
No= Y )\1—5 T‘FZQ , (29 .
. - " le)[g)—e"*n[e)|g),
with the initial conditionsA(0)=1 andC(0)=0. One can (36)
see from EQq(28) that the square pulse excites the atoms and
returns the population back to the ground statef 7, |g>|e>—>e“;’n|g)|e>,
with 7= 7m/\;~\27m/Q,, andm=1,2, ... .Using Eq.
(27) one obtainA(7,) = (—1)Me™™o™m, so that the effect of lg)|g)—e~*m|g)|g).

the square pulse of duratiof, is

. _ Proceeding the single-atom operati@) with goo=?,bn as is
9)19)2—e"*"9)a[g)2,  em=Nommt 7M. (30 escribed in Sec. Il we achieve the transformatibnwith

It is easy to check that the pulse does not interact with an I >
atom in the|e) state, provided than{),<wg, so that the ¢=2¢n— em=m(—ME y2n"—n),
state|e),|e), is unchanged. In order to complete transforma-
tion (1), the square pulse of duratian, has to provide

(37

where the sign must be the same as in B¢). One can see
that Eq.(34) has real solution fom>n and m=4. Taking

iz m=4, n=3 and choosing “ " in Eqg. (34) we obtain
l9)—e |g) 3D 9 a- (39

. . - 2 2m\7
for the single-atom case, with¢2* ¢,,,. For describing that A=Qq— 292\/;, Tm="q,
case we note that Eq&22) with Q¢(t)~Q(t) are almost 2
identical to the single-atom Eg8A3) from Appendix A, ex- ~
cept for the replacement of the factfr,(t)/2 in Eqgs.(A3) en=m(1=\2), @=—m2. (38)
by Q,(t)/V2 in Egs.(22). This is due to the cooperative
character of the two-atom excitation, which disappears for
one atom only. Therefore the transformatig86) and (31) For a convenient operation of the gate, we seek a switch-
are generally not compatible: if there is initially only one ing time as short as possible, which is anyway much shorter
atom in the|g) state, it may be left in the excited state after than the spontaneous emission time of the Rydberg states.
the laser excitation. In order to find for which parameterFaster gate operation is obtained by increasing the two-
values the transformation80) and (31) are both possible, photon Rabi frequency, but this increase has to be consistent
we consider the result®7)—(29), with appropriate changes with all other requirementéthe size of thed-d interaction,
in the Rabi frequency. The duration of the square pulse fononresonant approximations, etas a result, we will show

2. Optimization of the interatomic distance

completing a single-atom excitation is thus now that faster gate operation requires both increasing the
_ _ laser powers and decreasing the interatomic distance. We
Ta=mnIN;, N=12..., (32 chooseK,=0.1, which satisfies inequalit§25) at the maxi-
mum value of€dy,,, which may be necessary for the reli-
where able dipole trap operation. Preserving conditi@b) with

fixed K, for various distances between atoms we must

~ 1 [(A-Qg)? : :
)\125 ( . st) +Q§ (33) change(),,, according to the relation
V2K2A1A44(1)
and the probability amplitude for the low atomic state after Qtrap(r):T, (39

that pulse isA;(7,) = (—1)"e o™,
In order to obtain the transformation80), (31) for a  whereAy.4(r) anda_(r) can be found with the help of Egs.

given square pulse of duration, one needsr=7,=1,, (15). In a similar way one can obtain the value @f,. for
which is obtained when variousr, inserting{,,(r) from Eq.(39) into Eq. (21),
[2n?—m? Kia_(r)
A=04*r20,\/——. (34) Qpue(N =—=—="v2A1A44(r). (40
m?—n? VK3
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, , . 1 rt
T (1s) : o(t)= Ef,xﬂ‘l(t )dt’.

100 . . . . .
Calculations carried out in Appendix D lead to the solution
of Egs.(24) for a pulse of duratiorr,

17 .

- coso(t)—itd »

e -7 i)

= e AD="" @

0.01} P (W T
trap (mW) e i sin0(t) )
: ' : : : - - : t)=—————e 0, (42
0.5 1 15 2 25 3 35 4 45 5 a_(1-i7d)
r (Lm)

Cyvith the initial conditionsA(t— —)=1 and C(t— —)
=0 and with 6(t) satisfying Eq.(D9) of Appendix D. The
277 pulsef~_.Q,(t")dt' =27 returns all the population back
to the low level and leads to

FIG. 6. Power of the blue laser and the dipole trap laser, an
gate operation time as a function of the interatomic distance, whe
the gate interacts with the square pulse. The horizontal dotted lin
marks the spontaneous emission time of the Rydberg states.

Ltirs_ o, 17070
=€ e TS

From the relatior(21) and the resul{38) for the pulse dura- A(t—o0)= _
tion 7, we find the variation of the gate operation time with 1-i7ré
the interatomic distance

(43

Therefore the z- pulse provides the two-atom transforma-

" 27 “ tions

r=——m—.

T KA g(r) le)|e)—|e)|e),

Equations(39) and (40) and the experimental requirement le)lg)—ile)|g),

Qpue<Qyqp are consistent wheik; /K,<1. Then from (44)
Egs.(39) and(40) one can calculate the laser powers and the

gate operating time as a function of the interatomic distance. lg)|e)—ilg)|e),

This is shown on Fig. 6 foK,=0.1, K;=0.001 and the

values of other parameters presented before. One can see that l9)|g)—€'¢’|g)|g)

the optimal distance between atoms is about 1.5+,

which corresponds to the power of trap and blue fieldsand the one-atom transformatidg)—i|g). We note that,
~0.1-1 mW and~0.1-1 W, respectively, with the gate different from the previous case, now both atoms are always
operation timer,,~10-1 us. The horizontal dotted line in |eft in the ground state, so that no special care about the
Fig. 6 shows the spontaneous emission time of the Rydbergompatibility between the one-atom and the two-atom opera-
states. It can also be checked that by decreasiagd in-  tions is necessary, which is one of the advantages of the
creasingQpye, (irap does not lead to the excitation of at- “self-transparency” regime of excitation.

oms from the|e) ground state, as long as the interatomic  In order to correct for the phase shift one may use the
distancer is larger than 0.65um. one-atom transformatiofd) with A= — A 4 after the trans-

An attractive feature of this “square pulse excitation” re- formation (44). Indeed, forA= — A 44 the four-photon exci-
gime is that it is not very sensitive to the fluctuations in thetation of two atoms is out of resonance and can be neglected,
interatomic distancgas far as conditiori25) is truel. How-  while the change of the phase of an atom in fgestate is
ever one can obtain only certain values of the phasethis  still negligible small, becauses>A44. Therefore forA=

regime, as one can see from Eg7). If arbitrary values ofp — A 4.4 the atom-field interaction leads to
are necessary, one may change the pulse profile providing, at
the same time, the compatibility between the two-atom and le)|e)—|e)|e),
the one-atom operations as above, or utilize the self-
transparency regime described in the following section. leY|g)— —ile)|g),
(45)
C. Gate operation with simultaneous excitation of two atoms
e)——i|g)|e),
1. Self-transparency regime 9)le)—~ilg)le)
Now let us consider the case of Eq84), where we set l9)|g)——|g)|g).

A=A,4 for the average interatomic distance. We can look

for a solution of Eq(24) while a 27r-pulse(),,o(t) excites It is thus clear that applying the transformatio@®)) and

the atoms and returns all the population back to the low staté45) one after the other leads to the expected transformation
for any value ofé. Let us introduce the pulse area (1) with =7+ ¢’.
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FIG. 7. Average (1)(¢) (solid curve$ and relative dispersion
of the phase fluctuatiorglotted curvesfor A447= 100 (curves 1},
25 (curves 2 and 10(curves 3 as functions of,= \/(6r2>/r.

2. Effect of small fluctuations in the interatomic distance

The detunings in Eq. (24) may fluctuate due to fluctua-

PHYSICAL REVIEW &5 052301

4j5 5
r (um)
FIG. 8. Power of the blue laser and gate operation time as a
function of the interatomic distance in the self-transparency regime

of the gate operation wheRy,,=2.5 mW. The horizontal dotted
line marks the spontaneous emission time of Rydberg states.

3. Optimization of the interatomic distance

As in Sec. V B, the parameters of the gate operation can
be optimized for various interatomic distances, using the

tions in the interatomic distance. The best situation is, there€onditions(21) and (46) and looking for a fast gate opera-

fore, when any term that depends éncan be neglected.
Such terms are present in E@.3) for the phasep’ and in

tion. The fast gate operation needs the highest possible value
for the effective four-photon Rabi frequené€y,, which can

Eq. (D9) of Appendix D, which determines the pulse areaPe achieved with a few milliwatts of power of the trap field

6(t). They can be neglected in both E¢43) and(D9) when

2A44A
SOl b e -1 <<l (46)
Qtrap

In our case a’~1, so that the inequality (46)

needs Ad_dAllﬂﬁap<1, which is opposite to the

condition(25) found for the case with only one excited atom.

With the condition (46) ¢'=0, A(t—=)=1, and 6(t)
=2 arctafiexpt—ty/7)], which corresponds to the well-
known expression for 2 pulse,

47)

Using the valuePy,,=2.5 mW, which corresponds to
Qyrap=2.31x 10" 571, we obtain 2y 4A,/0F,,<0.01 for
the interatomic distance=4 um. The conditionré<1 can
be satisfied, in principle, either for small or for small 7.
However the only case of smallis in accordance with the
assumptiom\ ~ A 44> ), made at the derivation of EqR4)
from Eq. (20).

Assuming a Gaussian distribution functiorf(x)
= (xo\/7) " texp(—x?/x3), wherexo={(8r2)/r for the rela-
tive distance fluctuations= ér/r, we calculated the average

phase(¢)=(¢')+ 7 and the dispersior{ o?) —()?/{¢).

These quantities are shown in Fig. 7 as functionxgpfor

under our experimental conditions. When the inequa#f6)
is satisfied, the operation time of the trap can be estimated
from Eq. (47),

4AA?

T= 2/94:—2 y
[QtraprIue(t)]

(48)

where Eqs.(5) and (4) for (), have been used. In order to
preserve conditio21) with a smallK; for various inter-
atomic distances, we have to chod3g,.(r) according to
the relation

Agg(r)Aq

leue(r)ZZKl (49)

InsertingQ,,(r) into Eq.(48) and taking into account that
A=A44 we obtainT as a function of the interatomic dis-
tancer,

(r)= (50

K2Agq(r)

Figure 8 shows the curved, (r) and =(r) obtained with

the help of Eqs(49) and (50) for K;=0.2<1. It follows
from Eq. (50) that 7(r)Agq(r)=K;?=25, which corre-
sponds to curves 2 in Fig. 7. These curves point out that the
gate reliably operates only for very small relative interatomic
distance fluctuationxy<<0.01. It is more easy to provide
smaller relative distance fluctuations for larger distances.
Therefore, the best distance between atoms is now in the

A4497=100, 25, 10, which corresponds, respectively, toextreme left of Fig. 8, which is about 4—&xm, which cor-

Ppiue=0.8, 3.2, and 8 W. These curves show clearly thatesponds,

this scheme is very sensitive to distance fluctuations.

respectively, tor~0.53-2 us for Pye
~5-0.37 W. For larger interatomic distances the gate op-

052301-9



PROTSENKO, REYMOND, SCHLOSSER, AND GRANGIER PHYSICAL REVIEWGS 052301

eration timer is approaching the spontaneous emission timeions when the detuning is fixed, one can achieve an arbi-
of Rydberg states, which is marked by the horizontal dashettary value fore in this second regime—see E@3). The

line in Fig. 8. advantage of the “self-transparency” regime is, therefore,
that the same pulse profile provides an arbitrary desirable
VI. SUMMARY AND DISCUSSION conditional phase leaving both atoms in the ground state af-

ter the excitation. However the estimations of Sec. V C show

We studied two regimes of operation of a conditionalthat the gate reliably operates in this regime only when the
quantum phase gate realized on two neutral atoms in twéuctuations in the interatomic distance are very small.
separate optical dipole traps at a distaneel -5 um. The Thus each regime considered here has its advantages and
atoms are coupled with each other through the dipole-dipoleisadvantages. We note that there are more free parameters
(d-d) interaction induced by a two-photon transition of thein the general case described by E¢20), when all three
atoms to Rydberg states witir=40. The two-photon transi- relevant levels of the two-atom systeisee Fig. 5 are in-
tion is carried out by two fields, one of them is the constantvolved in the interaction with the field. Therefore, it may be
dipole trap field with\,,~802.3 nm, with a beam cross possible to find a better compromise for both eliminating the
sectionS;;,,~ 108 cn? and a power of a few milliwatts. effect of the distance fluctuations and obtaining an arbitrary
Another is a time-dependent field witky,,.~472.7 nm, conditional phase (one may also use a sequence of pulses
beam cross sectiorS,,~10 % cn?, and power Py, as proposed ifil0]). A full optimization requires a numerical
~0.1-10 W. It was found that the typical gate operationanalysis of the set of equatiori20), which will be carried
time is ~1-10 us. We note that in Ref[5] the authors out elsewhere.
supposed a much smaller interatomic distamee.3 um, The general results of analysis of tHed interaction and
and could reach a much faster operation time of the gatéhe two gate operation regimes carried out in Secs. IV and V
~10 ns. But accurate control and addressing of a singlean be applied also to other entangled quantum two-level
atom at such a small distance is clearly more difficult in thesystems used as qubits as, for example, quantum dots.
experimental conditions df7]. An advantage of a very fast As a final conclusion, the present study makes clear that
operation is that the atoms do not move during the gate opdoth the value and the fluctuations in the interatomic distance
eration. Here this condition is only approximately satisfied,are crucial parameters when it comes to using free-spate
but the analysis of such motional effects is beyond the scopimteraction for a quantum gate. This stringent requirement
of the present paper. might be somehow relaxed by using cavity-assisted colli-

In the first regime, described in Sec. V B, only one of thesions[22].
two atoms can be excited, and the state with two excited
atoms is shifted from resonance dueddal interaction. In
this regime one can neglect the influence of the fluctuations ACKNOWLEDGMENTS

in the interatomic distance, provided that thel interaction This work was supported by the European IST/FET pro-
is large enough, which is the case for our parameter value ram “QUBITS” and by the European IHP network

In Sec. VB we considered an example of the e_xcita}tion OLQUEST.” I.E.P. is also grateful to the Russian Foundation
atoms by a "square” pulse, which allowed us to simplify the ¢ g4 qjc Research, Grant No. 01-02-17330, for support.
analysis of the gate operation and to get analytical results. ' '

However exciting the atoms with a square pulse permits only

certain values for the conditional phagewhich are irratio- APPENDIX A

nal fractions ofw [see Eq(37)]. This is not appropriate for

a full quantum controlledkoT gate operation. If an arbitrary ~ Let us analyze the two-photon transitigss)—[5py/)
value of ¢ is necessary, the scheme of Sec. V B has to be~|42s). We denote the energy levels 1,2,3 as shown in Fig.
generalized to more complicated pulses profiles. The pulsd. The Hamiltonian of the three-level atom is

profile and the energy corresponding to an arbitraryand
still returning all the atomic population to the ground state,
can be found by numerical analysis of E¢&2), which will

be carried out elsewhere.

In the second “self-transparency” gate operation regime, hare Ho is the Hamiltonian of an atom without
described in Sec. V C the two atoms can be excited simultag, o interaction with the field,(1|Ho|1)=0, (2|Ho|2)
neously only, and the state with a single excited atom is out z .
of resonance. In this regime one can obtai 7 and realize
a full quantum controlledioT gate operation. This can be N _ . _
achieved by driving atom 2 with a/2 Raman pulse to ob- OPerator,(1|u|2)=u1£'"12 (2|u[3)=poe'", w15, pos
tain |g),—(112)(le)o+19),), |e)o—(1N2)(le),—]g),), ~ are real,
then applying the transformatidd) with ¢= 7, and finally
driving again atom 2 with anothe#/2 pulse. These three _
transformations are equivalent to the controlienfr map, E(D) = EurapCOS wrapt + Purap) F Epiue ) COL @piuel + Poiue).
when atom 2 changédsr preserveksits state at the condition
that atom 1 is irfg) (or |e)) state. In the absence of fluctua- wyap~ w12, wpue~wy3. Taking the wave function

H=Ho— n&t), (A1)

12 <3|H0|3>:h(1)0, Whel’e (,()0:(1)12+ w3, W17 and
wo3 are transition frequencieg is the dipole momentum
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Y= A:/L'vb1+ Azex —i (“’trapt + @rrapt 612)]
+ Aé exp —i (‘J"trapt + wpjyet + PtrapT Poiue™ 015

+02)],

solving the equatioriﬁgbz Hy, and neglecting the fast-
oscillating terms we obtain

-, .Qt
Al=i Z’apAz,
. Q Qpuelt
Po= =i i —5 2 Al Fi b';‘*()Ag, (A2)
) . ' ’ .leue(t)
A3=—|7A3+|—2 A,,

where A12‘1’12_""trapa A,/2:wo_wtrap_“"bluev Qtrap
:Mlzgtrap/ﬁv Qpiue(t) = moxfoe(t)/fi.  Supposing A
> Qyrap Qpiye We eliminate adiabaticallyA, from Egs.
(A2), which leads to

Q

2

Q,(1)

Al=i—=A]+i > Ab,

AT 0y
2 2

Q,(1)
2

AL+i A,

'Ag,,=—i[

where Q,(t) = Q2 pQpiue(t)/(24,4) is the two-photon Rabi
frequency, Q=0F.,/(241), Qg(t)=05,o(1)/(24,). Be-

cause() =const one can take into account a constant Stark

shift of the state$1), |3) in the trap field by setting

A=AeM"? k=13
so that
. Q1)
A1:|TA3,
- (A Qg(t) - Q5(1)
Ag=—i| 5 - 52 s+ti——Ag, (A3)

where A/2=A"/2+ /2. Equations(A3) are equivalent to
the equations for an effective two-level atom with the time-
dependent transition frequency

w(t)=we+ (1/2[Q—Qg(1)].

Such a two-level atom interacts with the effective field with
the carrier frequency = w4y + wpiue @and the effective Rabi
frequencyQ,(t). WhenA> QO (t),Q,(t) one can adiabati-
cally eliminate A; from Eqgs.(A3), find Az~[Q,(t)/A]A;
and obtain the resulb).

APPENDIX B

Here we present the calculations of the oscillator strength
for transitions to the Rydberg states YRb atom. Rabi fre-

PHYSICAL REVIEW &5 052301

quency forv—v’, v={n,l} one-photon transition is

|IU“VV’| ’ WVV’
QVV/: f (Bl)
ﬁ WSVVng

where i, is the matrix element of the dipole momentum,
W, andS,, are the powe(in erg and the cross sectigm

cn?) of the laser beam resonant to the transition, respec-
tively; ¢, is the light speed in vacuum. In order to fipg,,,

we have to calculate the oscillator strength

mevv’llu“vv’ |2

f
3he?

(B2)

v T ’

wherew,,,=(E,—E,))/h, E, is the energy of the state,
mis the electron mass,is the electron charge. Formulg2)
can be written in terms of the atomic energy uit;,
=mée*/#? and Bohr radiusiy=7%2%/(me’) as

2 ﬁwvvr

f
3 agEg,

|IU“VV’|2

vv! T

Normalizing the distance from the nuclear to an electron to
ag, taking ,,, in cm™ ! and introducing the Rydberg con-
stant R=0.5E,,=109 737.257 cm?, proceeding the inte-
gration over the angular variables of wave functions and
summing over all components of a multipletee[23], p.
221), one can find

®,y lmax

_ 2
T =" 3R 2141 R (83)
wherel ;.=maxl,l"},
RW,ZJ P,(r)P,/(r)rdr. (B4)
0

P,(r)=rR,(r), R,(r) is the radial wave function of the
statev. For np;,—n’s andnpg,—n’s transitions one has
to take the oscillator strengthfs,,./3 and X ,,./3, respec-
tively.

The radial wave function can be calculated in the approxi-
mation of Bates and Damgaal@4],

or\™ r ay
P,(r)=|—| exp— —, B5
" ( ! p(n:)kzork o
wheren’ is an effective quantum number,
»= R B6
nV_ Ei_E ’ ( )

E;=33691.02 cm? is the energy of ionization o¥'Rb, the
energyE, of the statev is determined from the experiment,
Bmax IS the maximum integer smaller tharf +1, and the
coefficientsa, can be found from the recurrent relations
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TABLE |. Oscillator strengths for &-np transitions. TABLE Il. Oscillator strengths for 3g—np transitions.

np Method[24] From Ref.[25] np (B9) (B5) (B8) An*
5p 1.028 1.033 33p 2.69 12.18 12.93 0.49
6p 0.0277 0.0266 31p 0.10 0.16 0.14 2.49
7p 6.69x10 3 6.18x10°3 29 0.027 0.036 0.027 4.49
8p 2.72x10°3 2.78x10°3 28p 0.016 0.022 0.086 5.49
9p 1.36x10°° 1.27x10°3 26p 0.0077 0.011 0.044 7.49
10p 7.63x10°4 7.44x10°4 20p 0.0014 0.0021 13.49
11p 45310 * 4.82x10°4 10p 1.35x 1074 2.71x10°4 23.49
12p 2.81x10°4 3.34x10°4

Oscillator strengths for transitions from thes3gtate to sev-

1 1 172 eralnp states found with the help of formul@B9), with the
ap=— " " , wave functions(B5) and the formulaB8) are presented in
ny [F(ny +1+1)I(n7 —1) Table I.
» APPENDIX C

a=a-15 [1(1+1) = (n} —k)(n) —k+1)].  (B) S
A photoionization of trapped atoms may destroy the gate
) ) if it goes faster than the typical time of the excitation of
Our numerical procedure of calculation of the wave func-atoms to Rydberg states. The strongest channel for the photo-
tions (B5) gives results that are satisfactory for the estima-onization is the two-step process, when the atom is excited
tions. In Table I one can compare the oscillator strengths fofg the Rydberg state; after that the electron from this state is

5s—np transitions calculated by using the formuib) for  taken away by strong trap field. We estimate the rate of such
P,(r) and the oscillator strengths taken frd@6]. In order  process as

to find oscillator strengths for any transitions—n’l’ one
can use different methods depending on the values of prin- 1 0Oionlirap
. ~ 2
ciple quantum numbens andn’. = o, (ICl%), (Cy
(1) The method used ip24] allows us to calculate the on rap

oscillator strengths for any transition with<36 or 37, while  whereo,,, is the cross section of the photoionization of the

the non-negligible numeri_cal error appears for _high.er _ Rydberg state];ap=Pirap/Strap IS the trap field intensity,
(*2) For ”>3*6 we can find radial wave function®5) if  and(|C|?) is the average population of the Rydberg state
An’ =|n}—n’,|>1 taking only the part of the function during the excitation of the atom. We estimate the upper limit
Pmax(nj ,nj,)(r) for 0<r<rg, while the other wave function for Tion by the formula[28] (see a_llsq23], p._26'/)_that was
P,.(r) is numerically zero €107%) for r>r,. For ex- derived in the approac24] used in Appendix B in the cal-
ar?]ple Pes(r)=0 for r>r,=200, so that we can find the culations of oscillator strengths. For the transition between
H S ) . _ .
oscillator strength for any $-v' transition considering M€ €igenstate={n,|} of Rb and the free-electron state with
P,.(r) only in the interval 6<r < 200. the orbital momentum quantum numbér and the energy
"(3) n>36 andAn* .=1.2<n* n* . In this case one can eR, whereR is the Rydberg constant, this formula reads

use the formuldl.177) of [26] (see alsd27]),

e () ,
O'ion%5.45><10 —*23|G(V,6,| )
3( 2n*n* 2 [1+€(n})“]
A~ — v *
R =3\ e, | 94N . xcogm[n* +A(e)+x(n% el V2 (C2)

where g, is in cn?, an effective quantum number® is
given by the formula(B6) of Appendix B, A(e) is the
extrapolation of the quantum defect—n? to the free-
electron energy regionG(v,e,l’) and x(n%,l,el’) are

parameters whose values are present¢@3h Extrapolating
the data of[23] to the casen}>1 we can estimate

where the dimensionless functig{An’ ,) is presented in
Fig. 15 of[26].

(4) n>36 and 2<An1’jv,<20. Here one can use the for-
mula (1.179) of [26],

% \ 53 i ;
R ,%0 486 nth’ (n*n* )1/3 1 |G(V,E,|_;:(5057T[nt+A(E)+X(nt|,€| )8;)|2S1 and O'ion
44 ' n* +n*, vty (An* )58 <7X10 cn? for v=(425) state of8’Rb. Applying for-
v vy mulas(28), (29), (38) and parameters of the trap field used
02177 throughout the paper, we find the typical time of ionization

cog W(Antv,+0.l8)]. (B9) Tion=128 us>7,~10 us, wherer,, is the time of the in-
teraction of the atom with the square pulse of the field. An

(An:]}’)7/3
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alternative estimation for,,, can be carried out by the for-

mula (11.32) of [26]. Taking into account the average popu-
lation of the Rydberg state we rewrite this formula in our

notations as

1 64n agR%Pyap  Si(2/e)

. 3,2 3
Tion 3 Cot wtrapslrap (ne)

(c®», (cy

wherea, is the Bohr radius and, is the speed of light. The
estimation by formuldC3) gives 7,,,~380 us, which is a
value even higher than that by the form@2) because of
the phase factor siR/e)~0.1 preserved in Eq.C3). Thus

PHYSICAL REVIEW &5 052301
A (t)=F(8)[cosO(t)—1]+a *,

A1) =F(d)[cosh(t) —1], (D4)

Ba(t) =F1(d)siné(t), By(t)=—Fy(5)sin6(t),

where F, () are the factors that have to be determined.
Considering the stationary case and inserthg and B, ,
into the set(D3) we find that the second two equations from

this set turn to be

0=—[6+0(t)(é+a? —1)]F(5)sinb(t) + O(t)F»(5),

for given parameter values the two-step ionization of the

Rydberg state by the trap field is a slow process with respect

to the gate operation and it does not destroy the gate.

APPENDIX D

Let us show that whiled(t) is given by Eq.(D9) we
obtain the solution of Eq924) given by Eqs.(42). Let us
define two new variable8(t) andBg(t) such that

At)=a_Ay(1)e'D  B(t)=By(t)e'’™.  (D1)

Inserting the expression®1) into Egs.(24) we obtain
iAy=—6(t)By,
iBo=—[6+6(t)(é+a? —1)1By— O(1)Ag, (D2)

where we replaced)g=£0,/2 with £=2A44A;/QF,,
and setA=Ag4, Q4/2=06(t). Let us separateA,=A;
+iA,, By=B;+iB,, and write the equations for the real
and imaginary parts of, and By,

Alz - 0(t)821

A,=6(1)By,
(D3)

Bi=—[8+0(t)(é+a® —1)]B,— O(1)A,,
B,=[ 6+ 6(t)(£é+a? —1)]B1+ O(1)A;.
Initial conditions for Eqgs. (D3) at t=—o are A;

=1/a_, A,=B;=B,=0. The first two equations from the
set(D3) are satisfied if

0=—[8+6(t)(é+a?® —1)]F(5)sinb(t)

+0()[La_—F(8)]. (D5)
These two equations are identical if
T6=F,(8)IF1(8)=[Ua_—F(8)]/F,5), (D6)

where 7 is the pulse duration, so that wheid is given by
Eq. (D6), Egs.(D5) are equivalent to

) ssiné(t)
B(t)= ——. (D7)
76— (é+a” —1)sind(t)
We integrate Eq(D7) by separating variables,
g 1 E+a®—1] dt
Osney ™ o |7 (D8)

Integration of Eq.(D8) leads to the following equation for
o(t):

ot a(t) [ 2A44A t—t
In tanﬂ _ 0V 280081 2-1|=—2, (DY)
2 70 Qtzrap T

wheret, is the integration constant. From E@B6) one can
find

_ 70

Fl(8)= =
1(9) a [1+(76)?]

T Fys
a [1+(78)?] 2(9)

Inserting these expressions into E(34) one can obtain the
result(42).
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