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Operation of a quantum phase gate using neutral atoms in microscopic dipole traps

I. E. Protsenko,1,2,3 G. Reymond,1 N. Schlosser,1 and P. Grangier1,*
1Laboratoire Charles Fabry de l’Institut d’Optique, UMR 8501 du CNRS, F91403 Orsay, France

2Lebedev Physics Institute, Leninsky Prospect 53, Moscow, Russia
3Scientific Center of Applied Research, JINR, Dubna, Russia

~Received 25 September 2001; published 15 April 2002!

In this paper we propose and analyze various operating regimes of a quantum phase gate built on two atoms
trapped in two independent dipole traps. The gate operates when the atoms are excited using a two-photon
transition from the hyperfine manifold of ground states up to Rydberg states with strong dipole-dipole inter-
action. Experimental requirements are discussed to reach a fast~microsecond! gate operation.
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I. INTRODUCTION

The manipulation of individual quantum objects, such
atoms, ions, or photons, opens the way to controlled e
neering of a quantum state of small sets of trapped partic
in order to encode and process information at the quan
level. Recent achievements in this direction use eit
trapped ions@1–3# or trapped photons in cavity QED sys
tems@3,4#. A third possibility, which has been actively stud
ied theoretically@5,6#, is to use trapped neutral atoms. Fro
the experimental side, we have demonstrated recently th
is possible to load and detect individual atoms in an opt
dipole trap with a submicrometer size@7#. Due to the ex-
tremely small trapping volume, only one atom can be load
at a time, resulting in strongly sub-Poissonnian statistics
the numberN of atoms in the trap. Moreover, by sendin
another trapping beam at a small angle in the same op
we have trapped two atoms at a controlled distance, wh
can be adjusted in the range 1 –10mm ~see Fig. 1!. The
dipole trap is initially loaded from a very low densit
magneto-optical trap~MOT!, which cools the atoms and a
lows us to detect them easily from the induced fluorescen
The presence of one atom in the trap can be detected w
less than 1 ms, and then by turning off the MOT the at
can be kept in the trap for several seconds, with a very
fluorescence rate. This setup opens possibilities to exp
various proposed schemes for atom-atom entanglement,
as controlled cold collisions@8# or atomic dipole-dipole cou-
pling @9#.

In this paper we will investigate more quantitatively se
eral schemes derived from the fast quantum phase gate
has been proposed in Ref.@10#. In this proposal, the qubits
are implemented by using hyperfine sublevels of the ato
ground state@5,6,11#, and rotations in the one-qubit subspa
are achieved by inducing Raman transitions between th
sublevels, separated byvF/2p56.83 GHz for 87Rb. Fast
~microsecond! operation can be achieved by using the tra
ping laser itself as Raman beams, together with a pu
control beam, addressing each atom, and detuned from
trapping beam byvF @12#. For two-qubit operations, one ca
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selectively couple one of the hyperfine sublevels to a hign
Rydberg state by using a direct two-photon transition invo
ing a pulsed blue laser and the trapping beam. Analyzing
operation of such a quantum gate requires first to study
dipole-dipole interaction in Rydberg states, which is the b
sic physical mechanism for atom-atom coupling, as well
the multiphoton absorption in a time-dependent laser fie
which is required to reach Rydberg states. We will also p
attention to limiting factors related to the limited lifetime o
Rydberg states, and to the deleterious effects of thermal p
ton absorption, photoionization, and interatomic distan
fluctuations. These problems will be treated using seve
approximations in order to obtain analytical results whene
possible. The relevant parameters values, such as lase
quencies, powers, interatomic distances, will be chosen
match what is accessible experimentally@7#. The Rydberg
state evaluations will be carried out using spectroscopic d
and formulas found in the literature.

The paper is organized as follows. In Sec. II we recall
general definition of a quantum phase gate and we desc
how it might be implemented in our setup@7#. Section III
introduces some expressions, approximations, and nume
parameters used in the paper and studies one-atom o
tions. In Sec. IV we examine the dipole-dipole interaction
Rydberg states, which is the basic ingredient for the tw
qubit gate operations. Section V contains the main result
the paper and is subdivided into three sections. In Sec. V
the general equations for the two-atom operations are
rived and then simplified for two cases of particular intere
In the first case, the resonant excitation is possible for
atom only, while the simultaneous excitation of two atoms
suppressed due to the dipole-dipole interaction. In the sec
case, the two atoms can be excited together only, while
one-atom excitation is nonresonant. The first case is analy
in greater detail in Sec. V B for a ‘‘square pulse’’ shape of t
exciting laser field. The advantage of this case is in the l
sensitivity to fluctuations in the interatomic distance. T
second case is analyzed in Sec. V C, it leads to a spe
‘‘self-transparency’’ regime of the interaction of two atom
with the field. The sensitivity of this regime to small fluctu
tions in the interatomic distance is discussed. A final disc
sion about advantages and disadvantages of each regime
experimental perspectives, is presented in Sec. VI.
©2002 The American Physical Society01-1



s
ga
s

io
e

e
e
.
al
b
i-
rb
on

e
abi
t
ing
wo-

er-
te
(

ly

-
of

the
, it
dif-

van-

.

lse
.
gly

ted
in

ig

th
m
p
o
s
es
d

ne-
be

PROTSENKO, REYMOND, SCHLOSSER, AND GRANGIER PHYSICAL REVIEW A65 052301
II. FORMULATION OF THE PROBLEM

In this section we recall the definition of a quantum pha
gate and present a possible implementation of such a
using two 87Rb atoms trapped in two separate dipole trap

A quantum computer, described by the wave funct
uC&5(k51

n Akuk&, carries out a unitary transformation in th
Hilbert space of its statesuk& and transforms the initial stat
vector$A1

in , . . . ,An
in%, which contains the initial data, to th

final state vector$A1
out , . . . ,An

out%, which contains the result
Any computer is a combination of many ‘‘universal logic
elements,’’ and, in principle, a quantum computer can
built from only two different kinds of elements: the cond
tional quantum phase gate acting on two qubits and the a
trary rotation gate acting on one qubit. With these gates
can construct an arbitrary unitaryn3n matrix @13,14#. Tak-

FIG. 1. Fluorescence signals from atoms trapped into two ne
boring independent dipole traps. The fluorescence is induced
‘‘optical molasses’’ beams that are always switched on to take
pictures. Each square is a pixel of the charge coupled device ca
and corresponds to a size of 1mm in the atom’s space. The to
picture shows two-dimensional~2D! images corresponding to n
atom~a!, one~left or right! atom~b!,~c!, and two atoms in the trap
~d!. The bottom picture shows a 3D reconstruction of the fluor
cence signal from two trapped atoms. Dark regions correspon
lower fluorescence signal.
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ing some statesug&, ue& of an atom as the qubit states, th
single-qubit rotation can be easily obtained by inducing R
oscillations in theug&→ue& transition. Thus, an importan
problem for implementing a quantum computer is design
a conditional quantum phase gate, which transforms the t
qubit stateua&ub& according to@4#,

ua&ub&→exp~ iwda,gdb,g!ua&ub&, ~1!

where ua&, ub& stand for the basis statesue& or ug& of two
qubits anddb,g , da,g are Kronecker symbols.

Here the two qubits will be encoded on the ground hyp
fine sublevels of two87Rb atoms trapped in two separa
optical dipole traps. We assume that for each atomk
51,2), Raman transitions between the upper stateue&k(F
52) and the lower stateug&k (F51) of the hyperfine mani-
fold of the lowest 5S1/2 state can be driven independent
with the help of additional fields of frequenciesvR , which
are detuned from the trapping field frequencyv trap by vR
2v trap5vF @12#, as shown in Fig. 2. This provides one
qubit rotations. Our goal is then to obtain a fast operation
the conditional quantum gate transformation~1!, which can
be realized under the experimental conditions of@7#. With
respect to previous proposals@5,6,15#, we avoid the need of
keeping atoms in highly excited Rydberg states as well as
fine level tuning using a constant electric field. However
will appear that compromises are necessary anyway, and
ferent possibilities each with some advantages and disad
tages will be examined.

The transformation~1! can be performed in two steps
The first step involves atwo-atom operation. The atoms in
statesug&k are excited to Rydberg states using a light pu
and then driven back to statesug&k with some phase shift
While the atoms are in the Rydberg states, they are stron
coupled through a dipole-dipole (d-d) interaction. The atoms
in ue&k state are not excited and are, therefore, not affec
by d-d interaction. After this the two-atom operation step
the state evolution is

ua&ub&→exp~2 iw0da,g2 iw0db,g1 iwda,gdb,g!ua&ub&.
~2!

h-
by
e

era

-
to

FIG. 2. Preparation of the initial states of Rb atoms using o
qubit rotations. It is assumed that the Raman transitions can
driven independently for each atom.
1-2
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OPERATION OF A QUANTUM PHASE GATE USING . . . PHYSICAL REVIEW A65 052301
The second step is aone-atom operation, which changes the
phase of the single-atom stateug&k in the absence ofd-d
interaction between atoms, and does nothing with the s
ue&k , so that

ua&ub&→exp~ iw0da,g1 iw0db,g!ua&ub&. ~3!

The purpose of the two-atom operation is to create the c
ditional ~state-dependent! phase shift required by Eq.~1!,
while the one-atom operation will compensate unwan
phase offsetsw0, which occur at the two-atom stage. Thou
there may be simpler ways to obtain single-atom ph
shifts, for the uniformity of theoretical and experiment
treatment all these operations will be obtained from the tr
sient excitation of~the same! Rydberg states. We first de
scribe one-atom operations, which are easier to impleme

III. ONE-ATOM OPERATIONS

Here we estimate the values of various parameters tha
necessary for the realization of the one-atom operations~3!
in our experimental conditions. Similar parameter values w
be utilized in the rest of the paper.

The operations~3! can be carried out by the interaction
atoms with a pulse of light, which is close to resonance w
the transition betweenug& and some excited state, but muc
further away from resonance with any transition from theue&
state. The last condition can be easily satisfied because o
large difference in energies between theue& and ug& states,
vF/2p56.83 GHz. For all numerical calculations we w
use the two-photon transitionug&k→u5p1/2&k→u42s&k shown
in Fig. 3, but other choices may be possible@16#.

The two-photon transition can be described using an ‘
fective’’ coupling field E(t)5 1

2 @V2(t)eivt1c.c.#, where v
5v02D/2, v0 is theug&k→u42s& transition frequency for a
single atom in free space,D/2 is the detuning from the two
photon resonance, andV2(t) is the two-photon Rabi fre-
quency. One of two fields participating in the transition is t
optical dipole trap field ofl trap5802.3 nm interacting with
the u5s&→u5p1/2& transition~it is assumed that other trans
tions from theu5s& state are further off-resonance and can
neglected!. The amplitude of the trapping field is constant

FIG. 3. Two-photon transitions to the Rydberg state of the87Rb
atom.
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time. The time-varying field is a pulse of ‘‘blue’’ light tha
can be obtained either from a pulsed tunable laser or
‘‘chopping a slice’’ from a continuous laser using a fa
modulator. Numerical calculations will be done withlblue
5472.7 nm ~argon ion laser line!, interacting with the
u5p1/2&→u42s& transition. It is to be noticed that the blu
light excitation is applied simultaneously on both atom
Therefore tight focusing is not required and the ‘‘blue’’ bea
waist may be larger than the interatomic distance. The tw
photon transitionu5s&→u42s& is analyzed in Appendix I, and
the two-photon Rabi frequency is

V2~ t !5
V trapVblue~ t !

2D1
, ~4!

where V trap and Vblue(t) are the Rabi frequencies of th
trap and the blue fields, respectively, andD1 is the detuning
from the one-photon resonance in theu5s&→u5p1/2& transi-
tion. For single-atom operations we assume thatV2(t)/D
!1 and everywhere below,D!vF , so that we can neglec
the population of theu42s& state and the interaction of th
field E(t) with atoms in the stateue&k . As long as the dura-
tion of the pulset is much shorter than the spontaneo
emission lifetimetsp

(42s) of the u42s& state, the time evolution
of the ug&k state is simply a phase shift that can be written

ug&kexpS i

4E0

t

V4~ t8!dt8D , where V4~ t ![
2V2

2~ t !

D
.

~5!

This evolution performs operations~3! with

w05
1

4E0

t

V4~ t8!dt8. ~6!

Let us estimate the values of parameters necessary to sa
t!tsp

(42s) . The oscillator strength for theu5s&→u5p1/2& tran-
sition is f 5s-5p'1/3 and we calculated the oscillator streng
for the u5p1/2&→u42s& transition to bef 5p-42s'(5/3)31026

~see Appendix B!. Let us suppose that the blue field is
‘‘square pulse’’ so thatVblue is constant in the time interva
t. Taking the cross section and the power for the trap a
blue beams asStrap51028 cm2, Ptrap510 mW and
Sblue51026 cm2, Pblue50.5 W, respectively, we estimat
V trap;531011 s21 and Vblue;109 s21. Supposingw0
;p and takingD5109 s21 @so that 2V2(t)/D50.1!1#,
we obtain that the duration of the pulse carrying out t
transformation~3! is t'10 ms. This value is indeed signifi
cantly shorter thantsp

42s'120 ms, which is our estimation
for the spontaneous emission time of the 42s state. We point
out that thermal photons may reduce significantly the eff
tive lifetime of the Rydberg states, and we assume that
propriate cooling and/or shielding is used to eliminate the
though this may be a significant practical problem@19#. In
Appendix C we also show that the probability for the Ry
berg state to be photoionized by the strong trapping field
be kept reasonably small. Therefore, apart from the influe
of thermal photons, the conditions for the one-atom ope
tions can be easily satisfied in the experiment.
1-3
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IV. DIPOLE-DIPOLE INTERACTION BETWEEN
RYDBERG STATES

In order to proceed with the analysis of the two-ato
operations we have to determine the states of two at
spatially separated by a few microns, when the atoms
excited to Rydberg states and coupled by a strongd-d inter-
action. Let us consider theu41p&, u42s&, andu42p& states of
87Rb atom shown in the top part of Fig. 4. For simplicity w
do not distinguish the fine and the hyperfine structures
Rydberg states, though the fine-structure splitting of the 4p
state is'0.047 cm21 @17#, and it should be taken into ac
count for more precise calculations. In the numerical eva
ations we use the average weighted energies of Ryd
states presented in@18#.

Since the transitionsu41p&→u42s& and u42s&→u42p& are
nearly resonant, the two-atom statesu42s&1u42s&2 are
coupled to the statesu41p&1u42p&2 and u42p&1u41p&2 due to
the resonantd-d interaction, which mixes these bare stat
and leads to new two-atom states. Let us find the coup
states in terms of atom eigenstates withoutd-d interaction.
We introduce a coordinate system with axisz directed from
atom 1 to atom 2. Following the approach of@20# we con-
sider theun,p,a& basic states,a5x,y,z, which correspond
to the dipole momentum of atom transitions directed alo
x, y, and z axes. Such states are linear combinations
usual states with magnetic quantum numbersm50,61. The
general expression for the wave function of a two-atom s
is

uc&5Asu42s&1u42s&21 (
a,b5x,y,z

Aa,bu41p,a&1u42p,b&2

1 (
a,b5x,y,z

Ba,bu42p,a&1u41p,b&2 . ~7!

In Eq. ~7! there are 18 two-atomp states and ones state. The
s state u42s&1u42s&2 always interacts withp states, so tha
there are no nonshifted states with the energyEs . On the
other hand, most of thep states do not participate in thed-d
interaction and have the energyEp , while some of them are

FIG. 4. Rydberg states of single87Rb atom~top! and two-atom
states~bottom!.
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shifted due to thed-d interaction~see the bottom part of Fig
4!. For atoms inunp,a& andun8p,a8& states withaÞa8 the
dipole momenta ofns→n8p transitions are perpendicular t
each other. There are 12 such states, they are not shifted
have energyEp . For describing the other states it is conv
nient to define

ucs&5u42s&1u42s&2 , ~8!

uxa&5~1/A2!~ u41p,a&1u42p,a&22u41p,a&2u42p,a&1),
~9!

uca&5~1/A2!~ u41p,a&1u42p,a&21u41p,a&2u42p,a&1),
~10!

where a5x,y,z. The dipole momenta of transitions from
u42s&1u42s&2 to u41p,a&1u42p,a&2 and tou41p,a&2u42p,a&1
states have opposite phases, so that the three antisymm
statesuxa& are ‘‘dark states.’’ Among other states, it is ea
to check that the vector (1/A2)(ucx&2ucy&) is also un-
coupled, because of the symmetry ofd-d interaction with
respect to the rotations of the coordinate system around
z. Finally the general expression of the coupled states is

uc̃&5Asucs&1Azucz&1A'uc'&, ~11!

whereuc'&5(1/A2)(ucx&1ucy&).
The Hamiltonian of the two-atom system isH5H0

1Vd-d , whereH0 is the energy operator in the absence
d-d interaction, with the diagonal matrix elemen
Es5^csuH0ucs&567 236.52 cm21 and Ep5^cauH0uca&
567 236.53 cm21. The operatorVd-d describes thed-d in-
teraction. Since the resonant wavelengthl'0.5 cm for the
transitions between the Rydberg states is much larger
the typical distance between the two atoms, one can cons
a staticd-d interaction with the energy

Vd-d5
mW 1•mW 2

r 3
23

~mW 1•rW !~mW 2•rW !

r 5
, ~12!

wheremW k5$m̂xk ,m̂yk ,m̂zk% is the operator of the dipole mo
mentum of the transition of atomk51,2 andrW is the radius
vector from atom 1 to atom 2. The nonzero matrix eleme
of Vd-d are thus

^cx,yuVd-ducs&5^csuVd-ducx,y&* 5A2\Gd-d ,

^czuVd-ducs&5^csuVd-ducz&* 522A2\Gd-d ,

^c'uVd-ducs&5^csuVd-duc'&* 52\Gd-d ,

where \Gd-d5m41m42/r 3, m415^41p,aukm̂aku42s,a&k ,
m425^42p,aukm̂aku42s,a&k for k51,2. One can then find
three eigenstates forH,
1-4
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OPERATION OF A QUANTUM PHASE GATE USING . . . PHYSICAL REVIEW A65 052301
ucp&5A2/3@ uc'&1~1/A2!ucz&] ~13!

and

uc6&5a6@ ucs&7j6~A2ucz&2uc'&)], ~14!

where

j252Gd-d* /@d0~11u!#, j152Gd-d* /~d0u!,

a65@113uj6u2#21/2

and

u5~1/2!@A1148~ uGd-du/d0!221#. ~15!

The stateucp& has energyEp and the statesuc6& have, re-
spectively, energiesE15Ep1\Dd-d and E25Es2\Dd-d
where Dd-d5d0u and \d05Ep2Es50.01 cm21. These
states are well separated, becauseDd-d.1.23107 s21 for
the typical interatomic distancer ,5 mm ~see Fig. 4!, which
is much larger than the Rydberg state lifetime. It can also
seen easily that forr>1 mm the admixture ofucs& in uc2&
is much bigger that inuc1&, and thus the two-photon trans
tion to the Rydberg states, which occurs throughucs&, is
maximum for theuc2& state. Since this state with energyE2

is also well separated from the other ones, we will consi
below that onlyuc2& is involved in the interaction of atom
with the two-photon field. This state is essentially the init
nondegenerate two-atom stateucs& down-shifted by thed-d
interaction~see Fig. 4!.

In the calculations above we neglected the retardation
the d-d interaction. In a first approximation the retardatio
leads to additional broadening of transitions participating
the d-d interaction, which is related to the van-der Waa
interaction between atoms. We estimated that the broade
due to the van-der Waals interaction is two to three order
magnitude weaker that the spontaneous emission broade
of any Rydberg state considered here, therefore it can
neglected. Though the calculations carried out in this sec
are only approximate, because we did not take into acco
the fine structure of Rydberg states, the states, energies
matrix elements found above should provide a good star
point for evaluating the experimental parameters.

V. TWO-ATOM OPERATIONS

This section presents the analysis of the two-atom g
operations. First we derive a general three-level model
the gate operation in a time-dependent coherent field~Sec.
V A !. The complete analysis of that model will be carried o
elsewhere, here we will be focused on two practically int
esting cases where the calculations can be done using
level approximations. These two cases correspond to exc
either the one-atom resonance~Sec. V B! or the two-atom
resonance~Sec. V C!: the frequency shift between these tw
resonances is just the effect of thed-d interaction. As we will
show, in the first case the gate operation is much less se
tive to small fluctuations in the interatomic distance than
the second case; this will be discussed in Sec. V C.
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We consider now two atomsk51,2 ~prepared initially in
ug& states! that strongly interact during the two-photon tra
sition ug&k→u5p1/2&k→u42s&k and back, when atoms pas
through Rydberg states. When both atoms are excited to t
Rydberg states we have to consider the states of the
atom system determined in the preceding section. There
three two-atom states that participate in the interaction w
the field: the ground stateuG&5ug&1ug&2, the symmetric state

u1&5
1

A2
~ u42s&1ug&21ug&1u42s&2) ~16!

with only one atom excited, and the two-atom Rydberg st
uc2& determined by Eq.~14!. The energy levels ofuG&, u1&,
anduc2& states are shown in Fig. 5. The antisymmetric st
with one excited atom@similar to Eq.~16!, but with sign2#
and the nonresonant two-atom Rydberg states do not pa
pate in the transition. The two-photon Rabi frequencyV2 is
given by Eq.~4!.

A. General equations

The effective Hamiltonian for the three-level syste
shown in Fig. 5 is

H5H02
\

2 (
k51,2

@V2
(k)~ t !ei (vt1u0)1c.c.#, ~17!

where V2
(k)(t) is a real function of time,u0 is a constant,

and v5v trap1vblue . The ~diagonal! matrix elements of
H0 are ^GuH0uG&50, ^1uH0u1&5\ṽ(t), and^c2uH0uc2&
5\@2ṽ(t)2Dd-d#. It is shown in Appendix A that

ṽ~ t !5v01
V trap

2

4D1
2

Vblue
2 ~ t !

4D1
,

FIG. 5. Level scheme for two atoms with the resonant inter
tion. The bold dashed line is the position of the two atomic exci
state without the dipole-dipole interaction.
1-5
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wherev0 is the frequency of the two-photon transition for
single atom in free space, and the two other terms are du
dynamical Stark shifts of the two-photon transitions. T
coupling matrix elements are

^GuV2
(k)u1&5^1uV2

(k)uG&5V2 /A2,

^1uV2
(k)uc2&5^c2uV2

(k)u1&5V2a2 /A2. ~18!

We suppose that the typical evolution rate of the system
greater that the spontaneous decay rate of the Rydberg s
and we neglect spontaneous emission. We write the w
function of two atoms

uc2&5AuG&1Ce2 i (vt1u0)u1&1Be22i (vt1u0)uc2&,
~19!

and insert it into the equationi\duc2&/dt5Huc2&, neglect-
ing the fast-oscillating terms. After this we obtain the set
equations for coefficientsA, C, andB,

iȦ52
V2~ t !

A2
C,

iĊ5FD2 2
Vst~ t !

2 GC2
V2~ t !

A2
~a2B1A!, ~20!

iḂ52@d1Vst~ t !#B2a2

V2~ t !

A2
C,

where

d5Dd-d2D, D/25v02v1V/2,

V5V trap
2 /~2D1!, Vst~ t !5Vblue

2 ~ t !/~2D1!.

We note that the value ofD is fixed and determined byv trap
andvblue , while the detuningd varies due to fluctuations in
the interatomic distance. In general, Eqs.~20! can be solved
only numerically. However one can find analytical solutio
at least in two special cases, where Eqs.~20! can be reduced
to equations for an effective two-level atom.

In the first case we supposeD!d'Dd-d and also
Vst(t),V2(t)!Dd-d . Taking into account that for our value
of parametersV trap@Vblue(t), these requirements can b
reduced to the condition

V2~ t !/Dd-d[K1!1. ~21!

Supposing that the inequality~21! is fulfilled we can adia-
batically eliminateB from Eqs.~20!, leading to equations fo
an effective two-level atom

iȦ52
V2~ t !

A2
C,

iĊ5FD

2
2

Ṽst~ t !

2
GC2

V2~ t !

A2
A, ~22!
05230
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where

Ṽst~ t !5Vst~ t !F12a2
2 V

d G , d'Dd-d@D. ~23!

Equations~22! describe a two-photon transition to the tw
atom state with only one excited atom. With the conditi
~21! the state with two excited atoms is never populat
however the presence of this state leads to a Stark shift. H
the dipole-dipole interaction ‘‘removes’’ the state with tw
excited atoms from the interaction with the laser fields die
a dipole blockade@21#.

In the second case we supposeD'Dd-d@d, assuming
again that inequality~21! is verified. By eliminating adiabati-
cally C from Eqs.~20! we obtain

iȦ52
V4~ t !

2
~A1a2B!,

iḂ52@d1Vst~ t !#B2a2

V4~ t !

2
~A1a2B!, ~24!

whereV4 is determined by Eq.~5!. Equations~24! describe
the four-photon transition from the lowest state to the high
state of the two-atom system andV4 is the four-photon Rabi
frequency. The state with one excited atom is out of re
nance, it has a negligible small population, however it lea
to a dynamical Stark shift of the transition.

The solutions of Eqs.~22! and ~24! will be found and
analyzed in the following sections.

B. ‘‘Square pulse’’ excitation and gate operations with only
one excited atom

1. Gate operation

Let us consider the case described by Eqs.~22!. The de-
tuning d;Dd-d , which depends on the distance between
oms, appears only in the dynamical Stark shift in Eq.~23!.
For reliable gate operation it is important to reduce the
fluence of fluctuations ofd due to possible variations of th
distance between the atoms. This takes place when

a2
2 V

Dd-d
[

a2
2 V trap

2

2D1Dd-d
[K2!1, ~25!

i.e., when thed-d interaction is large enough, so tha
Ṽst(t)'Vst(t).

A simple analytical solution of Eqs.~22! can be found by
assuming that the blue field is a square pulse, that is,

Vblue~ t !5const, 0,t,t,

Vblue~ t !50, t<0, t>t. ~26!

The approximation~26! is correct when the time of the in
crease~decrease! of Vblue(t) from 0 to its maximum~and
back! is much smaller than the pulse durationt, which is
about 10 ms as we will see. This is easily achieved in pra
tice using fast modulators. Assuming thatV2(t)5V2 and
Vst(t)5Vst are constant in Eqs.~22!, we find
1-6
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A~ t !5e2 il0tFcos~l1t !1 i
l0

l1
sin~l1t !G , ~27!

C~ t !5
iV2

A2l1

e2 il0t sin~l1t !, ~28!

where

l05
D2Vst

4
, l15

1

2
A~D2Vst!

2

4
12V2

2, ~29!

with the initial conditionsA(0)51 andC(0)50. One can
see from Eq.~28! that the square pulse excites the atoms a
returns the population back to the ground state ift5tm ,
with tm5pm/l1'A2pm/V2, andm51,2, . . . .Using Eq.
~27! one obtainsA(tm)5(21)me2 il0tm, so that the effect of
the square pulse of durationtm is

ug&1ug&2→e2 iwmug&1ug&2 , wm5l0tm1pm. ~30!

It is easy to check that the pulse does not interact with
atom in theue& state, provided thatmV2!vF , so that the
stateue&1ue&2 is unchanged. In order to complete transform
tion ~1!, the square pulse of durationtm has to provide

ug&→e2 i w̃ug& ~31!

for the single-atom case, with 2w̃Þwm . For describing that
case we note that Eqs.~22! with Ṽst(t)'Vst(t) are almost
identical to the single-atom Eqs.~A3! from Appendix A, ex-
cept for the replacement of the factorV2(t)/2 in Eqs.~A3!
by V2(t)/A2 in Eqs. ~22!. This is due to the cooperativ
character of the two-atom excitation, which disappears
one atom only. Therefore the transformations~30! and ~31!
are generally not compatible: if there is initially only on
atom in theug& state, it may be left in the excited state aft
the laser excitation. In order to find for which parame
values the transformations~30! and ~31! are both possible
we consider the results~27!–~29!, with appropriate change
in the Rabi frequency. The duration of the square pulse
completing a single-atom excitation is thus

t̃n5pn/l̃1 , n51,2 . . . , ~32!

where

l̃15
1

2
A~D2Vst!

2

4
1V2

2 ~33!

and the probability amplitude for the low atomic state af
that pulse isA1( t̃n)5(21)ne2 il0t̃n.

In order to obtain the transformations~30!, ~31! for a
given square pulse of durationt, one needst5tm5 t̃n ,
which is obtained when

D5Vst62V2A2n22m2

m22n2
. ~34!
05230
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Under this condition

tm5
2p

V2
Am22n2, wm5p~m6A2n22m2!,

w̃5w̃n5p~n6A2n22m2!, ~35!

so that the transformation of the two-atom states is

ue&ue&→ue&ue&,

ue&ug&→e2 i w̃nue&ug&,
~36!

ug&ue&→e2 i w̃nug&ue&,

ug&ug&→e2 iwmug&ug&.

Proceeding the single-atom operation~3! with w05w̃n as is
described in Sec. III we achieve the transformation~1! with

w52w̃n2wm5p~2m6A2n22m2!, ~37!

where the sign must be the same as in Eq.~34!. One can see
that Eq.~34! has real solution form.n and m>4. Taking
m54, n53 and choosing ‘‘2 ’’ in Eq. ~34! we obtain

D5Vst22V2A2

7
, tm5

2pA7

V2
,

w̃n5p~12A2!, w52pA2. ~38!

2. Optimization of the interatomic distance

For a convenient operation of the gate, we seek a swi
ing time as short as possible, which is anyway much sho
than the spontaneous emission time of the Rydberg sta
Faster gate operation is obtained by increasing the t
photon Rabi frequency, but this increase has to be consis
with all other requirements~the size of thed-d interaction,
nonresonant approximations, etc!. As a result, we will show
now that faster gate operation requires both increasing
laser powers and decreasing the interatomic distance.
chooseK250.1, which satisfies inequality~25! at the maxi-
mum value ofV trap , which may be necessary for the rel
able dipole trap operation. Preserving condition~25! with
fixed K2 for various distancesr between atoms we mus
changeV trap according to the relation

V trap~r !5
A2K2D1Dd-d~r !

a2~r !
, ~39!

whereDd-d(r ) anda2(r ) can be found with the help of Eqs
~15!. In a similar way one can obtain the value ofVblue for
variousr, insertingV trap(r ) from Eq. ~39! into Eq. ~21!,

Vblue~r !5
K1a2~r !

AK2

A2D1Dd-d~r !. ~40!
1-7
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From the relation~21! and the result~38! for the pulse dura-
tion tm we find the variation of the gate operation time wi
the interatomic distance

tm~r !5
2pA7

K1Dd-d~r !
. ~41!

Equations~39! and ~40! and the experimental requireme
Vblue!V trap are consistent whenK1 /K2!1. Then from
Eqs.~39! and~40! one can calculate the laser powers and
gate operating time as a function of the interatomic distan
This is shown on Fig. 6 forK250.1, K150.001 and the
values of other parameters presented before. One can se
the optimal distance between atoms is about 1.5–2mm,
which corresponds to the power of trap and blue fiel
;0.1–1 mW and;0.1–1 W, respectively, with the gat
operation timetm;10–1 ms. The horizontal dotted line in
Fig. 6 shows the spontaneous emission time of the Rydb
states. It can also be checked that by decreasingr and in-
creasingVblue , V trap does not lead to the excitation of a
oms from theue& ground state, as long as the interatom
distancer is larger than 0.65mm.

An attractive feature of this ‘‘square pulse excitation’’ r
gime is that it is not very sensitive to the fluctuations in t
interatomic distance@as far as condition~25! is true#. How-
ever one can obtain only certain values of the phasew in this
regime, as one can see from Eq.~37!. If arbitrary values ofw
are necessary, one may change the pulse profile providin
the same time, the compatibility between the two-atom a
the one-atom operations as above, or utilize the s
transparency regime described in the following section.

C. Gate operation with simultaneous excitation of two atoms

1. Self-transparency regime

Now let us consider the case of Eqs.~24!, where we set
D5Dd-d for the average interatomic distance. We can lo
for a solution of Eq.~24! while a 2p-pulseVblue(t) excites
the atoms and returns all the population back to the low s
for any value ofd. Let us introduce the pulse area

FIG. 6. Power of the blue laser and the dipole trap laser,
gate operation time as a function of the interatomic distance, w
the gate interacts with the square pulse. The horizontal dotted
marks the spontaneous emission time of the Rydberg states.
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V4~ t8!dt8.

Calculations carried out in Appendix D lead to the soluti
of Eqs.~24! for a pulse of durationt,

A~ t !5
cosu~ t !2 i td

12 i td
eiu(t),

B~ t !5
i sinu~ t !

a2~12 i td!
eiu(t), ~42!

with the initial conditionsA(t→2`)51 and C(t→2`)
50 and withu(t) satisfying Eq.~D9! of Appendix D. The
2p pulse*2`

` V4(t8)dt852p returns all the population bac
to the low level and leads to

A~ t→`!5
11 i td

12 i td
[eiw8, w85 i ln

12 i td

11 i td
. ~43!

Therefore the 2p pulse provides the two-atom transform
tions

ue&ue&→ue&ue&,

ue&ug&→ i ue&ug&,

~44!

ug&ue&→ i ug&ue&,

ug&ug&→eiw8ug&ug&

and the one-atom transformationug&→ i ug&. We note that,
different from the previous case, now both atoms are alw
left in the ground state, so that no special care about
compatibility between the one-atom and the two-atom ope
tions is necessary, which is one of the advantages of
‘‘self-transparency’’ regime of excitation.

In order to correct for thei phase shift one may use th
one-atom transformation~5! with D52Dd-d after the trans-
formation~44!. Indeed, forD52Dd-d the four-photon exci-
tation of two atoms is out of resonance and can be neglec
while the change of the phase of an atom in theue& state is
still negligible small, becausevF@Dd-d . Therefore forD5
2Dd-d the atom-field interaction leads to

ue&ue&→ue&ue&,

ue&ug&→2 i ue&ug&,

~45!

ug&ue&→2 i ug&ue&,

ug&ug&→2ug&ug&.

It is thus clear that applying the transformations~44! and
~45! one after the other leads to the expected transforma
~1! with w5p1w8.

d
n
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2. Effect of small fluctuations in the interatomic distance

The detuningd in Eq. ~24! may fluctuate due to fluctua
tions in the interatomic distance. The best situation is, the
fore, when any term that depends ond can be neglected
Such terms are present in Eq.~43! for the phasew8 and in
Eq. ~D9! of Appendix D, which determines the pulse ar
u(t). They can be neglected in both Eqs.~43! and~D9! when

F2Dd-dD1

V trap
2

1a2
2 21G!td!1. ~46!

In our case a2
2 '1, so that the inequality ~46!

needs 2Dd-dD1 /V trap
2 !1, which is opposite to the

condition~25! found for the case with only one excited atom
With the condition ~46! w850, A(t→`)51, and u(t)
52 arctan@exp(t2t0 /t)#, which corresponds to the well
known expression for 2p pulse,

V4~ t !5
2

t
sechS t2t0

t D . ~47!

Using the valuePtrap52.5 mW, which corresponds t
V trap52.3131011 s21, we obtain 2Dd-dD1 /V trap

2 ,0.01 for
the interatomic distancer>4 mm. The conditiontd!1 can
be satisfied, in principle, either for smalld or for small t.
However the only case of smalld is in accordance with the
assumptionD'Dd-d@V2 made at the derivation of Eqs.~24!
from Eq. ~20!.

Assuming a Gaussian distribution functionf (x)
5(x0Ap)21exp(2x2/x0

2), wherex05A^dr 2&/r for the rela-
tive distance fluctuationsx5dr /r , we calculated the averag
phase^w&5^w8&1p and the dispersionA^w2&2^w&2/^w&.
These quantities are shown in Fig. 7 as functions ofx0 for
Dd-dt5100, 25, 10, which corresponds, respectively,
Pblue50.8, 3.2, and 8 W. These curves show clearly t
this scheme is very sensitive to distance fluctuations.

FIG. 7. Average (1/p)^w& ~solid curves! and relative dispersion
of the phase fluctuations~dotted curves! for Dd-dt5100 ~curves 1!,
25 ~curves 2! and 10~curves 3! as functions ofx05A^dr 2&/r .
05230
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3. Optimization of the interatomic distance

As in Sec. V B, the parameters of the gate operation
be optimized for various interatomic distances, using
conditions~21! and ~46! and looking for a fast gate opera
tion. The fast gate operation needs the highest possible v
for the effective four-photon Rabi frequencyV4, which can
be achieved with a few milliwatts of power of the trap fie
under our experimental conditions. When the inequality~46!
is satisfied, the operation time of the trap can be estima
from Eq. ~47!,

t52/V45
4DD1

2

@V trapVblue~ t !#2
, ~48!

where Eqs.~5! and ~4! for V4 have been used. In order t
preserve condition~21! with a small K1 for various inter-
atomic distances, we have to chooseVblue(r ) according to
the relation

Vblue~r !52K1

Dd-d~r !D1

V trap
. ~49!

InsertingVblue(r ) into Eq. ~48! and taking into account tha
D5Dd-d we obtaint as a function of the interatomic dis
tancer,

t~r !5
1

K1
2Dd-d~r !

. ~50!

Figure 8 shows the curvesVblue(r ) andt(r ) obtained with
the help of Eqs.~49! and ~50! for K150.2!1. It follows
from Eq. ~50! that t(r )Dd-d(r )5K1

22525, which corre-
sponds to curves 2 in Fig. 7. These curves point out that
gate reliably operates only for very small relative interatom
distance fluctuationsx0,0.01. It is more easy to provide
smaller relative distance fluctuations for larger distanc
Therefore, the best distance between atoms is now in
extreme left of Fig. 8, which is about 4 –5mm, which cor-
responds, respectively, tot;0.53–2 ms for Pblue
;5 –0.37 W. For larger interatomic distances the gate

FIG. 8. Power of the blue laser and gate operation time a
function of the interatomic distance in the self-transparency reg
of the gate operation whenPtrap52.5 mW. The horizontal dotted
line marks the spontaneous emission time of Rydberg states.
1-9
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eration timet is approaching the spontaneous emission ti
of Rydberg states, which is marked by the horizontal das
line in Fig. 8.

VI. SUMMARY AND DISCUSSION

We studied two regimes of operation of a condition
quantum phase gate realized on two neutral atoms in
separate optical dipole traps at a distancer;1 –5 mm. The
atoms are coupled with each other through the dipole-dip
(d-d) interaction induced by a two-photon transition of t
atoms to Rydberg states withn'40. The two-photon transi
tion is carried out by two fields, one of them is the const
dipole trap field withl trap'802.3 nm, with a beam cros
sectionStrap'1028 cm2 and a power of a few milliwatts
Another is a time-dependent field withlblue'472.7 nm,
beam cross sectionSblue'1026 cm2, and power Pblue
;0.1–10 W. It was found that the typical gate operati
time is ;1 –10 ms. We note that in Ref.@5# the authors
supposed a much smaller interatomic distance,r;0.3 mm,
and could reach a much faster operation time of the g
;10 ns. But accurate control and addressing of a sin
atom at such a small distance is clearly more difficult in
experimental conditions of@7#. An advantage of a very fas
operation is that the atoms do not move during the gate
eration. Here this condition is only approximately satisfie
but the analysis of such motional effects is beyond the sc
of the present paper.

In the first regime, described in Sec. V B, only one of t
two atoms can be excited, and the state with two exc
atoms is shifted from resonance due tod-d interaction. In
this regime one can neglect the influence of the fluctuati
in the interatomic distance, provided that thed-d interaction
is large enough, which is the case for our parameter val
In Sec. V B we considered an example of the excitation
atoms by a ‘‘square’’ pulse, which allowed us to simplify th
analysis of the gate operation and to get analytical resu
However exciting the atoms with a square pulse permits o
certain values for the conditional phasew, which are irratio-
nal fractions ofp @see Eq.~37!#. This is not appropriate for
a full quantum controlled-NOT gate operation. If an arbitrary
value of w is necessary, the scheme of Sec. V B has to
generalized to more complicated pulses profiles. The p
profile and the energy corresponding to an arbitraryw, and
still returning all the atomic population to the ground sta
can be found by numerical analysis of Eqs.~22!, which will
be carried out elsewhere.

In the second ‘‘self-transparency’’ gate operation regi
described in Sec. V C the two atoms can be excited simu
neously only, and the state with a single excited atom is
of resonance. In this regime one can obtainw5p and realize
a full quantum controlled-NOT gate operation. This can b
achieved by driving atom 2 with ap/2 Raman pulse to ob
tain ug&2→(1/A2)(ue&21ug&2), ue&2→(1/A2)(ue&22ug&2),
then applying the transformation~1! with w5p, and finally
driving again atom 2 with anotherp/2 pulse. These three
transformations are equivalent to the controlled-NOT map,
when atom 2 changes~or preserves! its state at the condition
that atom 1 is inug& ~or ue&) state. In the absence of fluctua
05230
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tions when the detuningd is fixed, one can achieve an arb
trary value forw in this second regime—see Eq.~43!. The
advantage of the ‘‘self-transparency’’ regime is, therefo
that the same pulse profile provides an arbitrary desira
conditional phase leaving both atoms in the ground state
ter the excitation. However the estimations of Sec. V C sh
that the gate reliably operates in this regime only when
fluctuations in the interatomic distance are very small.

Thus each regime considered here has its advantages
disadvantages. We note that there are more free param
in the general case described by Eqs.~20!, when all three
relevant levels of the two-atom system~see Fig. 5! are in-
volved in the interaction with the field. Therefore, it may b
possible to find a better compromise for both eliminating
effect of the distance fluctuations and obtaining an arbitr
conditional phasew ~one may also use a sequence of puls
as proposed in@10#!. A full optimization requires a numerica
analysis of the set of equations~20!, which will be carried
out elsewhere.

The general results of analysis of thed-d interaction and
the two gate operation regimes carried out in Secs. IV an
can be applied also to other entangled quantum two-le
systems used as qubits as, for example, quantum dots.

As a final conclusion, the present study makes clear
both the value and the fluctuations in the interatomic dista
are crucial parameters when it comes to using free-spaced-d
interaction for a quantum gate. This stringent requirem
might be somehow relaxed by using cavity-assisted co
sions@22#.
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APPENDIX A

Let us analyze the two-photon transitionu5s&→u5p1/2&
→u42s&. We denote the energy levels 1,2,3 as shown in F
3. The Hamiltonian of the three-level atom is

H5H02m̂E~ t !, ~A1!

where H0 is the Hamiltonian of an atom withou
the interaction with the field,^1uH0u1&50, ^2uH0u2&
5\v12, ^3uH0u3&5\v0, where v05v121v23, v12 and
v23 are transition frequencies,m̂ is the dipole momentum
operator,^1um̂u2&5m12e

iu12, ^2um̂u3&5m23e
iu23, m12, m23

are real,

E~ t !5Etrapcos~v trapt1w trap!1Eblue~ t !cos~vbluet1wblue!,

v trap'v12, vblue'v23. Taking the wave function
1-10
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c5A18c11A2 exp@2 i ~v trapt1w trap1u12!#

1A38 exp@2 i ~v trapt1vbluet1w trap1wblue1u12

1u23!#,

solving the equationi\ċ5Hc, and neglecting the fast
oscillating terms we obtain

Ȧ185 i
V trap

2
A2 ,

Ȧ252 iD1A21 i
V trap

2
A181 i

Vblue~ t !

2
A38 , ~A2!

Ȧ3852 i
D8

2
A381 i

Vblue~ t !

2
A2 ,

where D15v122v trap , D8/25v02v trap2vblue , V trap
5m12Etrap /\, Vblue(t)5m23Eblue(t)/\. Supposing D1
@V trap ,Vblue we eliminate adiabaticallyA2 from Eqs.
~A2!, which leads to

Ȧ185 i
V

2
A181 i

V2~ t !

2
A38 ,

Ȧ3852 i FD8

2
2

Vst~ t !

2 GA381 i
V2~ t !

2
A1 ,

whereV2(t)5V trapVblue(t)/(2D1) is the two-photon Rab
frequency,V5V trap

2 /(2D1), Vst(t)5Vblue
2 (t)/(2D1). Be-

causeV5const one can take into account a constant S
shift of the statesu1&, u3& in the trap field by setting

Ak85Ake
iVt/2, k51,3

so that

Ȧ15 i
V2~ t !

2
A3 ,

Ȧ352 i FD2 2
Vst~ t !

2 GA31 i
V2~ t !

2
A1 , ~A3!

where D/25D8/21V/2. Equations~A3! are equivalent to
the equations for an effective two-level atom with the tim
dependent transition frequency

ṽ~ t !5v01~1/2!@V2Vst~ t !#.

Such a two-level atom interacts with the effective field w
the carrier frequencyv5v trap1vblue and the effective Rab
frequencyV2(t). WhenD@Vst(t),V2(t) one can adiabati-
cally eliminateA3 from Eqs. ~A3!, find A3'@V2(t)/D#A1
and obtain the result~5!.

APPENDIX B

Here we present the calculations of the oscillator streng
for transitions to the Rydberg states of87Rb atom. Rabi fre-
05230
rk

-

s

quency forn2n8, n5$n,l % one-photon transition is

Vnn85
umnn8u

\
A Wnn8

pSnn8c0
3
, ~B1!

wheremnn8 is the matrix element of the dipole momentum
Wnn8 andSnn8 are the power~in erg! and the cross section~in
cm2) of the laser beam resonant to the transition, resp
tively; c0 is the light speed in vacuum. In order to findmnn8
we have to calculate the oscillator strength

f nn852
2mvnn8umnn8u

2

3\e2
, ~B2!

wherevnn85(En2En8)/\, En is the energy of the staten,
m is the electron mass,e is the electron charge. Formula~B2!
can be written in terms of the atomic energy unitEat
5me4/\2 and Bohr radiusa05\2/(me2) as

f nn852
2

3

\vnn8

a0
3Eat

2
umnn8u

2.

Normalizing the distancer from the nuclear to an electron t
a0, taking vnn8 in cm21 and introducing the Rydberg con
stant R50.5Eat5109 737.257 cm21, proceeding the inte-
gration over the angular variables of wave functions a
summing over all components of a multiplet~see @23#, p.
221!, one can find

f nn852
vnn8
3R

l max

2l 11
~Rnn8!

2, ~B3!

wherel max5max$ l ,l 8%,

Rnn85E
0

`

Pn~r !Pn8~r !rdr . ~B4!

Pn(r )5rRn(r ), Rn(r ) is the radial wave function of the
staten. For np1/2→n8s and np3/2→n8s transitions one has
to take the oscillator strengthsf nn8/3 and 2f nn8/3, respec-
tively.

The radial wave function can be calculated in the appro
mation of Bates and Damgaard@24#,

Pn~r !5S 2r

nn*
D nn*

expS r

nn*
D (

k50

kmax ak

r k
, ~B5!

wherenn* is an effective quantum number,

nn* 5A R

Ei2En
, ~B6!

Ei533 691.02 cm21 is the energy of ionization of87Rb, the
energyEn of the staten is determined from the experimen
kmax is the maximum integer smaller thannn* 11, and the
coefficientsak can be found from the recurrent relations
1-11
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a05
1

nn*
F 1

G~nn* 1 l 11!G~nn* 2 l !
G 1/2

,

ak5ak21

nn*

2k
@ l ~ l 11!2~nn* 2k!~nn* 2k11!#. ~B7!

Our numerical procedure of calculation of the wave fun
tions ~B5! gives results that are satisfactory for the estim
tions. In Table I one can compare the oscillator strengths
5s→np transitions calculated by using the formula~B5! for
Pn(r ) and the oscillator strengths taken from@25#. In order
to find oscillator strengths for any transitionsnl→n8l 8 one
can use different methods depending on the values of p
ciple quantum numbersn andn8.

~1! The method used in@24# allows us to calculate the
oscillator strengths for any transition withn<36 or 37, while
the non-negligible numerical error appears for highern.

~2! For n.36 we can find radial wave functions~B5! if
Dnnn8

* [unn* 2nn8
* u@1 taking only the part of the function

Pmax(n
n* ,n

n8
* )(r) for 0,r ,r 0, while the other wave function

Pn8(r ) is numerically zero (,10215) for r .r 0. For ex-
ample, P6s(r )50 for r .r 05200, so that we can find th
oscillator strength for any 6s→n8 transition considering
Pn8(r ) only in the interval 0,r ,200.

~3! n.36 andDnnn8
* 51,2!nn* ,nn8

* . In this case one can
use the formula~I.177! of @26# ~see also@27#!,

Rnn8'
3

2 S 2nn* nn8
*

nn* 1nn8
* D 2

g~Dnnn8
* !, ~B8!

where the dimensionless functiong(Dnnn8
* ) is presented in

Fig. 15 of @26#.
~4! n.36 and 2,Dnnn8

* <20. Here one can use the fo
mula ~I.179! of @26#,

Rnn8'0.4866S nn* nn8
*

nn* 1nn8
* D 5/3

~nn* nn8
* !1/3F 1

~Dnnn8
* !5/3

2
0.2177

~Dnnn8
* !7/3Gcos@p~Dnnn8

* 10.18!#. ~B9!

TABLE I. Oscillator strengths for 5s→np transitions.

np Method @24# From Ref.@25#

5p 1.028 1.033
6p 0.0277 0.0266
7p 6.6931023 6.1831023

8p 2.7231023 2.7831023

9p 1.3631023 1.2731023

10p 7.6331024 7.4431024

11p 4.5331024 4.8231024

12p 2.8131024 3.3431024
05230
-
-
r

n-

Oscillator strengths for transitions from the 34s state to sev-
eralnp states found with the help of formulas~B9!, with the
wave functions~B5! and the formula~B8! are presented in
Table II.

APPENDIX C

A photoionization of trapped atoms may destroy the g
if it goes faster than the typical time of the excitation
atoms to Rydberg states. The strongest channel for the ph
ionization is the two-step process, when the atom is exc
to the Rydberg state; after that the electron from this stat
taken away by strong trap field. We estimate the rate of s
process as

1

t ion
'

s ionI trap

\v trap
^uCu2&, ~C1!

wheres ion is the cross section of the photoionization of t
Rydberg state,I trap5Ptrap /Strap is the trap field intensity,
and ^uCu2& is the average population of the Rydberg sta
during the excitation of the atom. We estimate the upper li
for s ion by the formula@28# ~see also@23#, p. 267! that was
derived in the approach@24# used in Appendix B in the cal-
culations of oscillator strengths. For the transition betwe
the eigenstaten5$n,l % of Rb and the free-electron state wit
the orbital momentum quantum numberl 8 and the energy
eR, whereR is the Rydberg constant, this formula reads

s ion'5.45310219
~nn* !3

@11e~nn* !2#3
uG~n,e,l 8!

3cos$p@nn* 1D~e!1x~nn* ,l ,e l 8!#%u2, ~C2!

where s ion is in cm2, an effective quantum numbernn* is
given by the formula~B6! of Appendix B, D(e) is the
extrapolation of the quantum defectn2nn* to the free-
electron energy region,G(n,e,l 8) and x(nn* ,l ,e l 8) are
parameters whose values are presented in@23#. Extrapolating
the data of @23# to the casenn* @1 we can estimate
uG(n,e,l 8)cos„p@nn* 1D(e)1x(nn* l ,e l 8)#…u2<1 and s ion

<7310221 cm2 for n5(42,s) state of 87Rb. Applying for-
mulas~28!, ~29!, ~38! and parameters of the trap field use
throughout the paper, we find the typical time of ionizati
t ion>128 ms@tm;10 ms, wheretm is the time of the in-
teraction of the atom with the square pulse of the field.

TABLE II. Oscillator strengths for 34s→np transitions.

np ~B9! ~B5! ~B8! Dnnn8
*

33p 2.69 12.18 12.93 0.49
31p 0.10 0.16 0.14 2.49
29p 0.027 0.036 0.027 4.49
28p 0.016 0.022 0.086 5.49
26p 0.0077 0.011 0.044 7.49
20p 0.0014 0.0021 13.49
10p 1.3531024 2.7131024 23.49
1-12
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alternative estimation fort ion can be carried out by the for
mula ~II.32! of @26#. Taking into account the average pop
lation of the Rydberg state we rewrite this formula in o
notations as

1

t ion
5

64p

3

a0
3R2Ptrap

c0\3v trap
2 Strap

sin2~2/e!

~ne!3
^uCu2&, ~C3!

wherea0 is the Bohr radius andc0 is the speed of light. The
estimation by formula~C3! givest ion;380 ms, which is a
value even higher than that by the formula~C2! because of
the phase factor sin2(2/e)'0.1 preserved in Eq.~C3!. Thus
for given parameter values the two-step ionization of
Rydberg state by the trap field is a slow process with resp
to the gate operation and it does not destroy the gate.

APPENDIX D

Let us show that whileu(t) is given by Eq.~D9! we
obtain the solution of Eqs.~24! given by Eqs.~42!. Let us
define two new variablesA0(t) andB0(t) such that

A~ t !5a2A0~ t !eiu(t), B~ t !5B0~ t !eiu(t). ~D1!

Inserting the expressions~D1! into Eqs.~24! we obtain

iȦ052 u̇~ t !B0 ,

iḂ052@d1 u̇~ t !~j1a2
2 21!#B02 u̇~ t !A0 , ~D2!

where we replacedVst5jV4/2 with j52Dd-dD1 /V trap
2

and set D5Dd-d , V4/25 u̇(t). Let us separateA05A1
1 iA2 , B05B11 iB2, and write the equations for the re
and imaginary parts ofA0 andB0,

Ȧ152 u̇~ t !B2 ,

Ȧ25 u̇~ t !B1 ,
~D3!

Ḃ152@d1 u̇~ t !~j1a2
2 21!#B22 u̇~ t !A2 ,

Ḃ25@d1 u̇~ t !~j1a2
2 21!#B11 u̇~ t !A1 .

Initial conditions for Eqs. ~D3! at t52` are A1
51/a2 , A25B15B250. The first two equations from th
set ~D3! are satisfied if
, J

v.

ie

05230
e
ct

A1~ t !5F1~d!@cosu~ t !21#1a2
21,

A2~ t !5F2~d!@cosu~ t !21#, ~D4!

B2~ t !5F1~d!sinu~ t !, B1~ t !52F2~d!sinu~ t !,

where F1,2(d) are the factors that have to be determine
Considering the stationary case and insertingA1,2 and B1,2
into the set~D3! we find that the second two equations fro
this set turn to be

052@d1 u̇~ t !~j1a2
2 21!#F1~d!sinu~ t !1 u̇~ t !F2~d!,

052@d1 u̇~ t !~j1a2
2 21!#F2~d!sinu~ t !

1 u̇~ t !@1/a22F1~d!#. ~D5!

These two equations are identical if

td[F2~d!/F1~d!5@1/a22F1~d!#/F2~d!, ~D6!

wheret is the pulse duration, so that whentd is given by
Eq. ~D6!, Eqs.~D5! are equivalent to

u̇~ t !5
d sinu~ t !

td2~j1a2
2 21!sinu~ t !

. ~D7!

We integrate Eq.~D7! by separating variables,

duF 1

sinu~ t !
2

j1a2
2 21

td G5
dt

t
. ~D8!

Integration of Eq.~D8! leads to the following equation fo
u(t):

lnF tan
u~ t !

2 G2
u~ t !

td S 2Dd-dD1

V trap
2

1a2
2 21D 5

t2t0

t
, ~D9!

wheret0 is the integration constant. From Eqs.~D6! one can
find

F1~d!5
1

a2@11~td!2#
, F2~d!5

td

a2@11~td!2#
.

Inserting these expressions into Eqs.~D4! one can obtain the
result ~42!.
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