N

N

Enhancement of Nonlinear Effects at the Degenerate
Band Edge of 2D Photonic Crystals
Magali Astic, Philippe Delaye, Robert Frey, Gérald Roosen

» To cite this version:

Magali Astic, Philippe Delaye, Robert Frey, Gérald Roosen. Enhancement of Nonlinear Effects at the
Degenerate Band Edge of 2D Photonic Crystals. Physical Review E: Statistical, Nonlinear, and Soft
Matter Physics, 2009, 79 (5), pp.056608. 10.1103/PhysRevE.79.056608 . hal-00554113

HAL Id: hal-00554113
https://hal-iogs.archives-ouvertes.fr/hal-00554113

Submitted on 10 Jan 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal-iogs.archives-ouvertes.fr/hal-00554113
https://hal.archives-ouvertes.fr

Enhancement of Nonlinear Effects at the Degeneratand Edge of 2D

Photonic Crystals

M. Astic, Ph. Delaye, R. Frey, and G. Roosen

Laboratoire Charles Fabry de I'Institut d’Optiqu€entre National de la Recherche
Scientifique et Université Paris-Sud,
Campus Polytechnique, RD 128, 91128 Palaiseau ¢céaarce

Abstract

The ability of 2D photonic crystals (PC) for highhencements of nonlinear processes is
analyzed in the case of a degenerate band edge twlesymmetrical diffracted beams
are generated by Bragg diffraction in the 2D-PClc@ations are performed using the
very simple Bragg coupled wave theory which onlyoives three coupled waves (the
incident wave and the two diffracted waves) for lihear interaction. The validity of the
approximation is proved for wavelengths lying a tireighbourhood of the band edges of
2D-PC. Very large local field intensities are pated around the band edge wavelengths,
in particular for the upper band edge. Nonlineanppgation is studied through the
analysis of degenerate four-wave mixing. For cogmtpagating pump beams
orthogonally sent onto the 2D-PC huge improveménhe phase conjugate reflectivity
are predicted at least for small incidence anglébsensignal beam. These results represent
an improvement by a factor of 20 when comparechéodase of a 1D-PC of the same
thickness made of the same materials. As threensetegphase conjugate beams are
generated in the four-wave mixing interaction, 2BePC could be very interesting for the
purpose of dense parallel optical signal processiigreover, the simple theoretical

analysis developed in the paper can be used fokiadyof 2D-PC.



l. Introduction

Since the discovery of photonic crystals (PC) [[Lla 2ot of theoretical and experimental
works have been performed so that practical dearegptical microcircuits may now be

considered for optical signal processing [3,4]. ld@ar, such microcircuits require optical
nonlinear functions such as those provided by thindler nonlinear processes.
Unfortunately the best nonlinear materials suchseasiiconductors exhibit too small

optical nonlinearities which prevent their use @w Ipower in small thickness devices.
However, light localization properties of photoragystals linked to the group velocity

reduction near a band extremum enables a largeaserof light intensity inside the
structure which is particularly interesting for tiaear effects [5-11]. The strong

enhancement of the nonlinear optical susceptibiiis quantified using the local field

factor [12]. The simplest case of 1D-PC was fitstdeed and large local field factors
leading to large increases in the efficiency of Im@mar processes predicted [13] and
measured [14, 15] in such PC’s.

At this point one question can be asked: is aPZDmore efficient than a 1D-
one for enhancing optical nonlinearities? At fisght, since there is less nonlinear
material in a conventional air-semiconductor 2D4Ré&n in a 1D-PC, the only possibility
for a better nonlinear efficiency of the 2D-PC liasthe potentiality of getting a higher
local field in an optimized 2D-PC. Due to the hars® of fabrication of such PC’s a
preliminary theoretical study is evidently wisheéseveral methods have been used to
solve nonlinear propagation problems in 2D-PC’'s finite-difference time-domain
(FDTD) often used to calculate band displacemenéstd Kerr effect [16-19], the Fourier
factorisation of nonlinear Maxwell equations witbpéication to Kerr effect [20, 21], the
variational method for the description of opticalitenic waves [22] or tunable super

prism effect [23], the Bloch mode method [24-26}ve effective field methods summing



over several Bloch modes of about the same wavewvé¢2?, 28]. All these methods
provide good numerical results when applied to ipaldr 2D-PC, but due to their
complexity, it is difficult to derive general statents for optimizing the pattern of the 2D-
PC.

In this article, we propose a particular 2D-PCiclhis potentially interesting
since it benefit from a degeneracy of the band eslgeelength for different diffracted
beams. For the theoretical analysis of this 2D-P€ uge a simple method based on
coupled-waves for the calculation of the localdiahd the degenerate four-wave mixing
near this degenerate band edge wavelength.

Section Il describes the 2D-PC considered in thidysfor the degeneracy of
its band edge and provides the Fourier expansioitsolinear and nonlinear optical
susceptibilities. Section Il considers the linpanpagation in the 2D-PC in the particular
case when the wavelength of the incident beamdatéal in the vicinity of the PC band
edge. The simple calculations used in our appreaelpresented and results are discussed
concerning the value of the local intensity instle 2D-PC. The study is enlarged to
nonlinear propagation in section IV in the caselefjenerate four-wave mixing. In this
section calculation of the conjugate reflectivity the considered configuration of the
different beams is developed and results analyzedmparison with those obtained for a
1D-PC of the same thickness. Finally, Appendix Hevoted to the justification of the
coupled-wave approximation used all along our aialy
I. The 2D Photonic Crystal
In order to benefit from the degenerate band edgeansider in this paper the 2D-PC
shown in figure 1.A. This 2D-PC is infinite in tRalirection and has a thickness L in the
direction. Such a photonic crystal can be obtaiogetching of a material of refractive

index n; with the etched part filled by a material of refrae indexn,. This PC results



from the etching of two tilted gratings of the saperiod.1=e;+e, and the same filling
factorei/ 4 with wavevectorsK; and K, tilted by angles ¢ and -& with respect to the
direction respectively. These gratings are showdoited lines in figure 1.A. The 2D-PC
is therefore composed of diamond-shaped pins o&g¥e indexn; located in a sea of
refractive indexn, arranged following a centred rectangular lattitlee primitive lattice

cell shown in figure 1.B is a rectangle with dimiens 4/ cosg) and 4/sin(e ) along the
z andx directions respectively. The diamond of diagonglcosg) and g/ sin(« )located
at the centre of the cell and the triangles ofsigl&2cos )) and g /(2sin(a ))occupying

its four corners have the refractive indexthe remaining part of the unit cell exhibiting a

refractive indexn,. Taking the periodicity of the 2D-PC into accouthte linear
permittivity ¢(z,x) and the K order nonlinear susceptibility;((“)(z,x) can be

decomposed using Fourier series following the iatat
: z
&(z, x):{ S Enpny EXPI[N K,z + NXKXx]}H(—j (I1.1)
Nz.Ny L

With &=¢ or X(”). In equation II.1N, and N, are positive, negative, or null integers,
K,=2rcosgp)/ A and K, =2zsin(@)/ A4 are the modulus unit cell wavevectors in the
reciprocal space, anff(z/L)= fbrO<z<L andli(z/L)= Oelsewhere. The\l, Ny)

order Fourier componertty given by
X

Engny = L0 dzf 2o dx (2, ) expi(N,K ,z+ N, K, X) (I1.2)

Al2cosn A12sina

takes the value

2
50,0252"'(51_52)% (1.3.a)



_ A ¢ | | .
szny _?gﬁ)sm{i(’\lfk NX)%}Sm[E(NZ_ Nx)%:|{1+ exd_lﬂ:(Nz_ Nx)]}

(11.3.b)
whereé; and&, are the values of(z, x) in the materials of refractive indices andn,
respectively. As expected from the symmetry of thanit cell,

ENg-Ny, = EongoN, T Song N, TN, N, - NOte also that_ =0 if N,— N is odd and

that SN Ny reduces to

:—51_52% i &
CNz*N; N AS"{%NZ/J (11.4)

for Ny =% N,.
Let as note also that, in order to separate bagd effects which are our prime interest in

the present analysis from Fabry-Perot resonanice@-PC is assumed to be surrounded
by a medium of refractive indexy=+/¢00, Of, equivalently anti-reflexion coated or

slightly prismatic. In such a way there is no unteanreflexion at the boundaries which

might artificially enhance the field intensities.

1. Linear propagation and local intensity
For the sake of simplicity we consider here isatogiffraction of an incident beam

Er(z,x) polarized orthogonally to the incidence plane. fnethe y direction) with all the

possible diffracted waves also polarized alongythirection. The total electromagnetic

field E(z, x) inside the sampled(< z< L ) writes then:
E(zX) =X Ep,. (2% 1.1
L
where, for N'= Q EDO(z,x):ER(z,x):éARexpiKR.[ is the incident field of

polarization vectoré, complex amplitudear and wavevectokg = k(cosg,z + sing,x),



and Ep =€A, expﬁKDN,[) is theN'th order diffracted wave of complex amplitudg

and wavevectokp, . = k[cosHDN.2+ sinHDN.f(] (see figure 2)k = 2z ny/ A is the modulus

of each wavevectoKDN, with 4 the incident beam wavelength amg = ./¢qothe mean

refractive index of the 2D-PC.

In the following the slowly varying envelop apgmmation (SVEA) is used for
the description of beam propagation although ldogal field factors are predicted in
section I11.4. at the band edge of the short leRIRPC considered in our analysis. In
fact, this SVEA approximation is valid in a mediypmssessing the translational symmetry
in the x-direction because, as long as, as showm dfter (see equations 111.6) the read
and reflected Bragg waves are considered in ouysisalndeed, these diffracted beams
play the role of the counterpropagating waves gxgsivhen the SVEA is not made [29].
The validity of such an approximation at the baddesof 1D-PC’s was already proven in

Ref. 13. The propagation equation of the amplitude . then writes:
2ikp, OApy. = % NZNZ"gNZNXADN..expi[kDN" Ko Jr + N2K2Z+ NeK x| .2
ZIN'X

The grating being infinite in the x direction, pbasatching is required along this
direction, which gives:

K[sin@p,.) =sin(op,. |+ NxKx=0 1.3
Equation 111.3 means that diffracted waves of osdér andN” are coupled through the
order N, of the 2D-grating along the x direction and tota# grating orders along the z
direction. The phase mismatch is then along thieextibn only and writes:

AKN NN, L= N2 K L +Kcosgp, .~ cosop b .4

[11.1. Small phase-mismatch approximation at the PC band edge



Relation 1.3 also holds foN"= €orresponding to the incident wave so that difiect

waves are emitted in transmission and in reflexiom directions

Opy. = Arcsin

. (insin(Za)

+ sin@Rj =6, and 0p, =n—6srespectively. In the

following, we will restrict ourselves to the mostteresting case when the diffracted
orders corresponding t8N, =+ dre at the degenerate band edge of the 2D-PCednds
shown in Appendix | only these waves exhibit thghhiocal intensities required for
nonlinear optics.

Two conditions are necessary for a strong coupliegween incident and

diffracted waves: a high Fourier coefficieny, 2N, and a quasi-perfect phase matching

(Z’kN',NZ,NXL:O)- As shown by equation 1.4 the highest possibbeipting occurs

gl_gz%sin{n%} of the Fourier series

through the N, =+ lcomponentsg,;.; =g =

describinge(z, x ) We therefore consider a 2D-PC of periotlscosa and A4 /sina such
as the phase-mismatciikg;.1L is null for N, =1 at the centre of the degenerate
forbidden band for a read beam of wavelengghorthogonally incidentgg = Ponto the
2D-PC. In such a situationy, 4, anda are linked through the relation:

Ay =2Ang, cosa 1.5
In the small phase-mismatch approximation usediimaoalysis, due to relation 111.5, only
the waves diffracted in reflexion in ordexg, = + afe considered. Other diffracted waves
(in transmission and reflexion) present large phasamatches and are safely neglected.
In the same manner, only ordexs, =+ afle considered in our calculations. Although
they must be taken into account in particular foreaact determination of the band edge

wavelength, because they exhibit large phase mdrest they can be safely neglected



too. The validity of this small phase-mismatch apgmation is discussed in details and
proved in Appendix 1.

I11.2. Reflectivity
In the small phase-mismatch approximation the @aigropagation equations derived

from equation 111.2 writes:

dAg _ 1€,
dz ng44cC0Sy

[AD1 expidkz+ Ay, expiAkzz] l.6.a

dAgl _ i7e 4

= exp-idk,;z 11.6.b
dz  ngglcostp, Aoy EXP- kg
d .
P oI expidk,z l.6.c
dz  ngsAcostp, 2
With 8, = 77— Arcsin sing, + 23| g = - Arcsir{sin@R - "S'“”J . and
' L /\neff | : /\neﬁ
2 1 . _
Ak , = 27 j\osa + /]Eﬁ COst, , ~Cost |. Setting A, =a, exp(Akl ;Akzjz,

ADlzaiexpi(@jz, and ADZ:azexpi(%jz, and using a matrix

representation equations lll.6.a to ¢ write

dA_ A .7
dz
with
ar
A= a1
az
And



—i(dk, + AK,) 14— P —
Ngtt A COSOR Negt A COSOR
M=| i— "2 —i(ak, -34k,)/4 0 111.8
Neti A COSOp,
. e, .
— L 0 ~i(4k, —34k,)/4
Nett 4 COSOp, ( ' 2)

Resolution of the matrix differential equation Tlis performed through the diagonalization of

the matrix M by using the basis change given byntlagrix

X1 X2 X3
pP= Y, Yo VY3 1.9
a 2> I3

With (x,y;,z) the components of the eigenvectors of the newsbasithe new basis,

equation I11.7 writes

—=DB [11.120

With B=pA and D = p*MP the diagonal matrix representing the M matrix ie hew
basis. Integration of equation 11.10 with the lingonditions A (0) = Eg,, ADl(L) =0, and
ADZ(L) =0 together with a reciprocal basis change allowdeduce the transmissidir and
reflectivitiesR; andR, of the device

Tr = |Er(L)? /|Ero|” =|XBr €XPAL + %,B, expl,L + X;B, expiL|* /[Exo|” 1.1l
R, = (costp,/ c080r|En, () /|Eno|” = (0805, / cOSAR)YiBr + V2B, + v B, /[Erg  1111Lb

2
R, = (cosgDZ/coseRlED2 (o)( |Ero|” = (coseDZ/cong)leR +2,B,+ 2B,|" /|Ego|” 1NI.11.
With Bg, B;, andB, the components of the B vector solutions of thsteay of equations

provided by limit conditions:

XlBR + XZBl + XSBZ = ERO
y,BrexpAL +y,B expA,L +y,B,expA,L =0 .12
zB expAL +z,B expA,L +z,B,expA,L =0



And 4; (i=1,3) the diagonal elements Df

In the general case the transmissions and riftees are numerically
computed. However, in the case when the read bsamrmal to the 2D-PC, the diffracted
beams are symmetrical with respect to the incithet@m and analytical solutions are found

for Tr andR; andRy:

2
T:TR=|AR(L)| = M > l.13.a
| Ero | [2chBL +idkshpL|
o - — . Am,z(o)z 2] shpL |2
R=R; = R, = C0S2« —ERO = 2ﬁ°|2ﬂchb’L N iAksiﬁL| .13.b
Where B =5 S B5 = e =1 Arcsin A5N9 and
A ° nZ2cosa’’ 2 Ang )

_ 2ncosa N 27 Neg (
A y)

Ak cosa).

Note that, as it must be, energy is preserved sineegets R+T=1 for the analytical solution
given by equations Ill.13.a-b as well 8+R,+Tr=1 for the numerical one provided by
equations lll.11.a-c.

[11.3. Local Intensity

The local field inside the 2D-PC is given by

E(zx)= Aq(2)expike 1 + Ay (2)expikp, 1+ Ay (Z)expik,, r .14
With
Az (2) = (x,Br eXPAZ + X,B expA,z+ x,B, expA,z)expi Blq * Bk, ;Akz z 111.15.a
Ay, (2) = (viBe expAz+ y,B expA,z+ y,B, expA,z)expi %z II.15.b
Ay, (2) = (zBr expAz+z,B expl,z+ 2,B, expA,z)expi By~ 3k, , III.15.c

The local intensity is then given dyz,x) = |E(z x){2

10



[11.4. Numerical Results

In this section the incident beam is sent perperality onto the 2D-PC described in section
Il. All the calculations were performed using=n? =10 43 =n5=1, a=20 degrees for a
sample of lengti.=4um. In order to give an insight into the potentigtimization of the
device for applications, the band-centre wavelengthas adjusted so that the upper or lower
band edge wavelengig=1500nm.

The influence of the filling factog / 4 on the normalized mean local intensity

1= (/31 LAsin@))[ 2 emddxydzI(x, Z) was  studied for both upper and lower band

edges. The result is presented in figures 3.A anwdgther with the grating wavelength

A= )0/(2nes COSE)) for the cases of lower and upper bad edges regelctin both cases,

due to the increase of the effective index of i&fos consecutive to the lower volume of the

etched part of the 2D-PC, the grating wavelengtireesses with increasing valuesegf 4. It

can also be observed from figure 3 that the filliagtor plays an important role in enhancing
the local intensity with a maximum arougd/ 41 =  @bboth cases. Figure 3 also shows that
the mean local intensity is much larger on the ufyaend edge of the 2D-PC. This is directly
connected to the larger number of periods obtainetiis case for the same device length.
This means that better results are expected imdh&near regime when the upper band edge
of the 2D-PC is considered. As a consequence, tbrdycase with an optimized filling factor
(e / 4=05) is considered in the following.

Due to the symmetry of the problem, for an incideeam orthogonal to the
2D-PC both diffracted beams exhibit the same reflieg. Figure 4.A shows the reflectivity
spectrum of one of these two identical diffract@giins together with that of the normalized
mean local intensity,. At low wavelengths, the reflectivity of each d#tted beam tends

towards one half and the device is totally reflegtith two equal intensity diffracted beams.

11



At the band edge occurring at 1500 nm the refl@gtorops to zero and the mean normalized
local intensity is maximum. Note that the resondeegls to high local intensitieg £34) and

to narrow bandwidths4¢= 3.3nm) which can be useful for optical filtering WDM optical
signal processing.

Figure 5 shows the spatial repartition of the lan&nsity inside the 2D-PC. The pattern
which is infinite in the x-direction is only repeagted between x=0 and x34n in the figure.
Local intensity is patterned following the 2D-PChehg with maximum at the centre of the
device in the z-direction with intensity almost 20Mes larger than the incident intensity
which is a great promise of efficiency for nonlin@gtical processes. It is also important to
note that much higher local field intensities can dbtained using longer PC’s, but with

somewhat narrower frequency bandwidths.

V. Degenerate Four-wave Mixing
Four-wave mixing is used for characterizing thealdield induced enhancement of the third
order optical nonlinear susceptibility [12] and dompare the efficiency of 2D-PC for this
purpose to the case of already known 1D-PC [13].
IV.1. Optical configuration
The optical configuration considered in this sacti® shown in figure 6.A and B. Figure 6.A
represents the beams incident onto the 2D-PC amde¢hms that outcomes from this PC,

while the wavevectors of the different waves présethe sample are indicated in figure 6.B.

The two counter propagating incident pump waxe©) and Egg(L)are

orthogonal to the 2D-PC and give rise to six pungves inside the PC. These six waves are

counter propagating two by two: the forward andkiaard reference wavesgge and Egg)

due to the transmission of the incident pump weaed the waves Kpg, and Epg, , and

12



ELF2 and ELBZ) diffracted by the reference waves (see the cpomding wavevectors in
figure 6.B). The incident signal beams(0) gives rise to three signal wavegd, Espy and
Es_Dz) and three conjugate Wave%(,ELDl, andELDz) counter propagating togs, Espy
and Eﬂz) respectively.

In the following, calculations performed for the tekenination of the
propagation of the different waves are presentddréegiving some numerical results and
comparing these results with those obtained whemgusD-PC. All the calculations were
performed in the fully parametric approximationnaf significant pump depletion and signal
amplification. Note that this approximation is alwapossible when considering the four-
wave mixing process provided the pump and sigradent intensities are low enough. This
approximation also allows describing the pump dgdad propagation in the linear regime in
order to show the local field enhancement of theel tbrder nonlinear susceptibilities with no
spurious effects. At higher pump intensities Kdfe@ induced self phase modulation and
cross phase modulation are evidently expected.elpescesses could also be treated using
the formalism described in this paper.

IV.2. Pump wave propagation

The amplitudes of the pump waveBge, Epg,, and Epg,issued from the forward

propagating incident pump beam are directly derifean results of section IIl.2 with

Ore=0r=0. The amplitudes of the pump wa¥gg, Epg,, and Epg, issued from the forward

propagating incident pump beam are also derived fiesults of section 111.2, but withkg=r,

replacing Kz by Kz, and using adequate limit conditions

(Ere(L) = Ergy Epg,(0) =0, Epg,(0) = 0). One gets then:

13



AR (2) = ba(DBa(D) exdln(1)2) + (1) Bu() exlia(i)2)
+ xg(j)Bz(j)exp(ig(j)z)]expi(AkR.l(J) +AkR|2(J)jZ

4

A (2) =[ya(1)Br()) expliu(1)2) + 2 ())By(j) expl,(})2)

+ y3(1)82(1>exp(ﬂg(nz)]expi( Z

A (2) =[z.(1)Br(J) explis (1) 2) + 2,(1) By () explAy(1)2)
Akml(j) _'?’Akmz(j)jz

4
(l=F,B;j=0x)

+z3(j>Bz(j)exp(ig(j)z)]exp{

2N,
With AkRIlz = ch/:losa + njveﬁ [COS@D|:L2 _COSQRI]! (I = F, B)

I'V.3. Signal wave propagation

Akmz(j) _BAlel(j)jz

IV.1.a

IV.1.b

IV.1.c

Signal wavesEs, Egp, and Egp, are also given by equations IV.1.a-c if usipg s and

Rl =S and DI = SD.

IV.4. Conjugate wave propagation

Conjugate wavegc, Ecp,, and Ecp, are coupled to each other by the 2D-PC and taakign

waves Es, Egp, and Egp, through four-wave mixing with the pump waveke, Epg,

Epr,+ Erss, Epg,, @and Epg,. Since the conjugate waves are counter-propagatirthe

signal waves, the propagation equations of theipliandes A-, Acp, s and Acp, are then

given by:
dA- i : ,
=- exp-idkgz + exp-idks,z
dz Nes A COSOg 81[AbDl Pridiaz + Aop, &P~ 14Ks2 ]
i47'L'2 3) *
- + +
N/ COS Xeff [ARFARB Aor Aog, ADFZADBZ]AS

IV.2.a

14



Vop, =- i el[AC expiAkSlz]

dz N, A COSH
f a IV.2.b
i 47
_—Xef) [ARFARB + Aor Aog, Aok, Pos, ]Asq
Netf 4 COSOg,
d .
Poor - - &r] Ac expidks,?]
dz Nefr 4 COSOgp,
o IV.2.c
i
‘—Xeff [ARFARB + Aor, Aog, T Aok, Aos, ]ASDZ
Nt A cosﬂSDZ

Where »&) = 45 as given by equation 11.3.a. The first term of thight hand side of

equations IV.2.a-c corresponds to Bragg diffractias in section Il1.6) and the second one to
the four-wave mixing process. Setting A = asexp(_Ak 4Akszj2.

Aky, Akszj (Aksz mkﬂj
e —L =27, expil —2——32 |z,
A.=ac xp—|( 7] z A =as expl 2 z

ACM = aCDl exp- i(%}z’ ASDZ = aSDZ exn(%jz, and

A, =2, expi(%jz, equations 1V.2.a-c can be written in matrix form:

%AC =MA: +A, V.3
ac Fe
With A¢ =| acp, | andA¢ =| Fep, | where
8oy Feo,
. i47%y 8 R
Fe(z)=-—"5— [ARF (2)Acs(2)+ Por (Z)ADBL(Z) + Aor, (Z)AD82 (Z)]as(z) IV.4.a
Negt A COSOg

Fen, (2)= ‘% [Ace (2)Acs(2) + Por, (2)Aog, (2)+ Ao, (2)Aos, (2l (2) V.4
eff so

Fen, (2)= _%[ARF(Z)ARB(Z) + Ao, (2)Aog, (2)+ Ao, (2)Aog, (z)]a;DZ (2)  Ivac
et SOy

15



In equation V.3, the matriklc writes

[ ine ie
— (dkg + 4k -——1 -——1
4( St 52) Neg A COSHg Neg 4 COSHg
ine [
Mg =| ————2——  —(4kg, —34kg;) 0 IV.5
neﬂilcoseSD1 4 .
ime, i
- 0 —(4kg — 34k
Neti A COSAs,, 4( St s2)

As in the case of the linear propagation of pumg@ signal waves, resolution of the matrix
differential equation 1V.3 is performed through tiagonalization of the matric by using

the basis change given by the matrix

Xe1 Xeo2 Xes
Pe=|Yar Ye2 Yes V.6
Zer Lo Zes

With xci, Yei» zci (1I=1,2,3) the components of the eigenvectors of éve Ibasis.

The conjugate intensities write then:

2

Ic(0) = ‘Xc1bc (0)"'XcszDl(O)"'XcgbCDz(O)‘ IV.7.a

_ 2|COSOgp
|CD1(L) = ‘yCle(l-)"'ycszDl(l—)"'yc;gbCDz(L)‘ cosd IV.7.b

S

_ 2|COSlgp,
| cp, (L) —‘ZCﬂ)C(L)"'ZcszDl(L)‘*chbCDZ(L)‘ o IV.7.c

S

With
be (Z) = ch (O) + o Fe (Z) expE icy Z')dz'] EXPicyZ
bCD_|_(Z) = |_KCD]_(O) +s FCD_L(ZI) exp( ic2 Z')dz']eprlczz

Bep, (Z) = |_KCD2 (O) +5 Feo, (Z) exp(-ics Z')dZ]expicaz

Whereic; (i=1,2,3) are the eigenvalues of matx and where

16



Fc(2) FIC(Z)
Fep, (2 =P F'CDl(Z)

Fcp,(2 Fep, (2
Kc (0)
The constant matrix K =| K¢p, (0) | is determined by using the limit conditioag(L) =0,
Kep, 0)

acp, (0)=0 etacp, (0)=0.

I'V.5. Numerical result
All the results presented in this section wereudated for a maximum local intensity for the
pump beam, i-e, for wavelengths lying in the vityirof the upper band edge of the forbidden

gap and using a filling facta®/4=0.5 and a grating periad=319nm. Figures 7.A-D show
the conjugate reflectivity spectrap. :|IC(O)|2/|IS(O)|2 . Pcoy :‘ICDI(O)‘Z/|IS(O)|2 , and

Pcp, = ‘ICDZ(O)‘Z/“ S(O)|2 plotted in semi-logarithmic scale for incidence lasgof the signal

beam of 0, 1, 2, and 3 degrees respectively. Asard, high conjugate reflectivity peaks are
predicted at the band edge of the 2D-PC. The ldeggease of the conjugate reflectivities
(several orders of magnitude) observed for smalirdegs from the band edge wavelength
confirms the huge enhancement of local nonlineacetibilities at the band edge of PCs.
Due to symmetry the conjugate reflectivities of thi#acted signal beams are identical when
the signal beam is perpendicular to the 2D-PC, lwligcnot the case for signal incidence
angles of 1, 2, and 3 degrees. It can also be nioted figures 7.A-D that each of the
diffracted conjugate beams exhibits a reflectiwitlyich is about half of the direct conjugate
beam, as expected from the splitting of the indid&mal beam in two equal diffracted beams
inside the 2D-PC.

It should be noticed that, at the band edge wagghe there are conjugate outputs of

the diffracted beams of the signal beam althougiteths none of these diffracted beams.

17



Indeed, destructive interferences occur for theeadted beams due to the presence of the
signal input beam. This is not the case for thgugate beams which are generated inside the
2D-PC so that diffracted conjugate beams are etnitieh about the same intensity as that of
the signal conjugate beam. This behavior is quitelar to that occurring in a symmetrical
laser cavity where only the amplified transmitteghim exists when such a cavity is operated
below threshold as an intracavity amplifier whiltoutputs of equal intensities are observed
in the laser operation of this symmetrical cavity.

Figures 7.A-D also demonstrate the high spectrdlspatial selectivity of the 2D-PC,
with decreases by more than one order of magnitadeletunings of 2 nanometers or 2
degrees. This property is very encouraging foragglication of such devices to multiplexed
optical signal processing.

IV.6. Comparison with a 1D-PC
The huge enhancement of nonlinear processes rdpiortehis paper for 2D-PC’s using a
Fourier techniqgue was also underlined previously I®-PC’s using the transfer matrix
method [13]. In the following a comparison of therfprmances of 1D- and 2D-PC’s is

described. For this comparison the same globakdasiconsidered. The two PC’s are etched
in a semiconductor material (dielectric permitiesti; = n? =10 43and ¢, = n3 = ) of length

L=4um; the band centre wavelengthis adjusted so that the upper band edge wavelasgth
Ag=1500nm, and the filling factor is adjusted for nmaxim mean local intensity inside the

PC’s. Moreover, in both cases the signal beamtiggonal to the device. Figure 8 shows the
conjugate reflectivity of the signal beam for thHe-Jand the 2D-PC (dashed and continuous
lines respectively). Note that the diffracted cgate beams existing in the 2D-PC are not
considered in figure 8. The wavelength selectivityhe device is almost the same for the two
PC’s with a sharp resonance peak of conjugatectefiy around the band edge at 1500nm.

However, the conjugate reflectivity of the signabin is about 20 times larger for the 2D-PC
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than that predicted for the 1D-PC. This large eobarent definitely demonstrates the
favourable influence of the degeneracy of the baage of the 2D-PC on the efficiency of
nonlinear processes. Note that the global enhanteimseeven three times higher when
considering the sum of the three conjugate beamteeimn the case of the 2D-PC. These
considerations clearly means that the 2D configomadf the CP must be chosen carefully in
order to maximize the nonlinear effect, which carelbsily performed by using the theoretical

approach described here.

V. Conclusion

A simple model based on the Bragg coupled equatiasseen developed for the description
of the linear and nonlinear propagation of lighRId-PC’s. This model has been successfully
applied to the particular case of a specific 2Dd&Signed for exhibiting a degeneracy of its
band edge in the direction of the two diffractecins. The validity of the simple analytical
model developed was demonstrated in this particokme. As the method used for the
verification is quite general, it must be stresdet the model may be applied to any 2D-PC,
which makes the analysis developed in this papee general.

The specific choice made for the 2D-PC has ledrany high mean local
intensities (particularly for the upper band edfi¢he 2D-PC) and to huge improvements of
the phase conjugate reflectivity resulting from ftihegenerate four-wave mixing process
considered for the nonlinear interaction. The athga of this 2D-structuration has been
underlined by the comparison of the 2D-PC to adsiesh 1D-PC with three phase conjugate
beams of individual intensity about 20 times largegan that of the single phase conjugate
beam obtained with a 1D-PC. Evidently, such a ptypeould be very interesting for high

efficiency operation of high fan-out optical cirtaifor optical signal processing.
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VI.  Appendix I: Validity of the coupled wave approximaton
In the coupled wave approximation used in sectlgrtiree waves are considered: the read
wave of complex amplitud@g and the two Bragg diffracted waves of complex atugés

Ap, and A, . The diffracted wavesy,  of wavevectorkp, is then coupled to these three

waves by the propagation equation

dpg'\)'x i Z{ A exp-idkP (N, N, )z
= - EnNL_- ’
dz  ngacos) N0 ENX P8 AN B
Nx
+ En-nyn Aoy EXP- 14K (N, N, )2 Al
+ey,-ny1Pp, €XPmidkS) (N, Nx)z} (j = Rf,Tr)
With
Ak (N:N,) = k(Costh)) ~cosd, J+ NK, A2.a
AkY (N, N, )=k(cosd)) —cosf, J+ NK A.2.b
D, z X Dy, D, z “z
Ak (N,:N,) = k(costh)) ~coss, J+ NK, A2.c
And

N Asina
&) =4, = m— Arcsir sind, +
-1 1

eff _|

Asina

R) — — _ . . _
& = @,, = - Arcsin sing,

eff _|

Equation A.1 considers both the transmitted wa)agéN) and the reflected oneﬁ\g*: for
X X

Ny # £1 where the incidence angles are given by

05\ = Arcsin sindg - N, £sina
X ANgg
08" =7 - Arcsin sindg - Nxm
Nx ANgg
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As it was made in section Il only the wavelengtine lying around the upper band
edge was considered here since it provides thepeefstrmances for the device. Moreover, as
in section Ill, we considered the case of an ingideeam sent quasi-perpendicularly to the

2D-PC (sin(gr) = 0). For A=1.5um, Asina/A/ns =0.871 and only ordersN, =% 1(in
reflexion and in transmission) are possible. A®asequence, only the amplitud;a‘g[)l and

(T?l of the transmitted diffracted waves are considefddreover, ase/4=0.5 for a

maximum local intensity in the PC the non-zero kerutomponents are given by the simpler

equation 11.4. Equation A.1 was numerically integch for both Ag[)l and Ag?l when

limiting the expansion iMN; to the third order|(\jz| < 3). The correction due to the fifth order

(Nz =%5) was also calculated using equation A.l. The iuglidf the coupled-wave

approximation was tested by the calculation of thécal intensities

2 : . L : .
|(LT[3)+1: (1/|0L)jOL‘AEr+1(z)‘ dz normalized to the local intensity givéncalculated in section

1.
Figure 9 shows spectra of the third and fifth orderrections to the total local

intensity due to the transmitteq, = + diffraction orders. It must be underlined that éneor

is very low (less than 1%) in the vicinity of thara edge wavelength where the local
intensity is maximum in the 2D-PC. This definitgisoves the reliability of the approximation
made in section Ill. This result also strongly ¢oné that the simple analysis developed in
this article can be successfully applied to anylinear 2D-PC (0.7% and 0.1% for the third
and fifth orders corrections respectively at thadbadge wavelength). This means that as far
as nonlinear properties of the 2D-PC at its bangeed concerned, only the incident and
Bragg diffracted waves must be considered, whidmidely simplifies the analysis which can
be even analytical, leakage waves due to higheerodiffracted waves being calculated

numerically in the linear regime.
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Figure Captions

Figure 1. Schemes of the 2D-PC (A) and of its weli (B). Dashed lines in figure A
correspond to the tilted 1D-PC’s giving rise to @@-PC. OZ and OZ' are orthogonal to
these gratings.

Figure 2. Configuration of the read and nth ord#ratted wavevectors.

Figure 3. Grating period1) and normalized mean local intensity) (plotted as a function of
the filling factor €/4) for the lower and upper band edge of the 2D-P@igures A and B
respectively. Note that the band edge wavelengtheéssame in figures A and B so that the
band-centre wavelengths are different in the twoutations.

Figure 4. Reflectivity and normalized mean locaéisity () spectra.

Figure 5. (color online) Local intensity repartition the 2D-PC for the upper band edge
wavelength.

Figure 6. Input and output beams (A) and inside evactors (B) in degenerate four-wave
mixing in the 2D-PC. The grating wave vectors andy agepresented in the case of the -1
order of diffraction of the forward pump wave.

Figure 7. Phase conjugate reflectivity spectrahef 2D-PC for different incidence angles of
the signal beam. The phase conjugate reflectigitglotted for the signal beam (continuous
line) and the -1 and +1 diffracted orders (dashetidotted lines respectively).

Figure 8. Comparison of the phase conjugate réfigctspectra calculated for the 1D and
2D-PC’s. Only the signal phase conjugate reflestivs plotted for the 2D-PC. The phase
conjugate reflectivity of the two diffracted sigrisdams which are of the same magnitude are
not shown in the figure.

Figure 9. Relative third and fifth order correctitm the normalized mean local intensity

plotted as a function of the signal wavelength.

25



Figure 1

26



=z
Y| Py
By

2D-PC

Figure 2

27



A (wm)

A (wm)

0

0.2 04 06 0.8
e1/A

Figure 3

28



Reflectivity

| | 7 | |
148 149 150 151 152
Wavelength (um)

Figure 4

29



200
150
100

50

0000000
1000000

0000000
1000000

0000000
0000000
0000000

1000000

Y Y.YY

1 2 3 4

Figure 5

30



A

ESD2
2NN XXXXX
Z& X0
=N Y XX X et

—
AN %E

Figure 6

31



Conjugate Reflectivity (Log,)

il
| | | ) | | |
1.495 15 1.505 1495 15 1.505

Wavelength (um)

Figure 7

Wavelength (um)

32



Phase conjugate reflectivity

|
1.48

— T
149 15 151

Wavelength (um)

Figure 8

1.52

33



Fifth order correction (%)

0.5 —

| |
—

(9,) UOND84102 JBpJO pPJIY |

1.5 1.51 1.52

1.48 1.49

Wavelength (um)

Figure 9

34



