
HAL Id: hal-00554113
https://hal-iogs.archives-ouvertes.fr/hal-00554113

Submitted on 10 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancement of Nonlinear Effects at the Degenerate
Band Edge of 2D Photonic Crystals

Magali Astic, Philippe Delaye, Robert Frey, Gérald Roosen

To cite this version:
Magali Astic, Philippe Delaye, Robert Frey, Gérald Roosen. Enhancement of Nonlinear Effects at the
Degenerate Band Edge of 2D Photonic Crystals. Physical Review E : Statistical, Nonlinear, and Soft
Matter Physics, 2009, 79 (5), pp.056608. �10.1103/PhysRevE.79.056608�. �hal-00554113�

https://hal-iogs.archives-ouvertes.fr/hal-00554113
https://hal.archives-ouvertes.fr


 1 

Enhancement of Nonlinear Effects at the Degenerate Band Edge of 2D 

Photonic Crystals 

 

M. Astic, Ph. Delaye, R. Frey, and G. Roosen 

Laboratoire Charles Fabry de l’Institut d’Optique, Centre National de la Recherche 

Scientifique et Université Paris-Sud, 

Campus Polytechnique, RD 128, 91128 Palaiseau cedex, France 

 
 
 

Abstract 
 

The ability of 2D photonic crystals (PC) for high enhancements of nonlinear processes is 

analyzed in the case of a degenerate band edge when two symmetrical diffracted beams 

are generated by Bragg diffraction in the 2D-PC. Calculations are performed using the 

very simple Bragg coupled wave theory which only involves three coupled waves (the 

incident wave and the two diffracted waves) for the linear interaction. The validity of the 

approximation is proved for wavelengths lying at the neighbourhood of the band edges of 

2D-PC. Very large local field intensities are predicted around the band edge wavelengths, 

in particular for the upper band edge. Nonlinear propagation is studied through the 

analysis of degenerate four-wave mixing. For counterpropagating pump beams 

orthogonally sent onto the 2D-PC huge improvement of the phase conjugate reflectivity 

are predicted at least for small incidence angles of the signal beam. These results represent 

an improvement by a factor of 20 when compared to the case of a 1D-PC of the same 

thickness made of the same materials. As three intense phase conjugate beams are 

generated in the four-wave mixing interaction, the 2D-PC could be very interesting for the 

purpose of dense parallel optical signal processing. Moreover, the simple theoretical 

analysis developed in the paper can be used for any kind of 2D-PC. 
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I.         Introduction 

Since the discovery of photonic crystals (PC) [1, 2] a lot of theoretical and experimental 

works have been performed so that practical devices for optical microcircuits may now be 

considered for optical signal processing [3,4]. However, such microcircuits require optical 

nonlinear functions such as those provided by third order nonlinear processes. 

Unfortunately the best nonlinear materials such as semiconductors exhibit too small 

optical nonlinearities which prevent their use at low power in small thickness devices. 

However, light localization properties of photonic crystals linked to the group velocity 

reduction near a band extremum enables a large increase of light intensity inside the 

structure which is particularly interesting for nonlinear effects [5-11]. The strong 

enhancement of the nonlinear optical susceptibility was quantified using the local field 

factor [12]. The simplest case of 1D-PC was first studied and large local field factors 

leading to large increases in the efficiency of nonlinear processes predicted [13] and 

measured [14, 15] in such PC’s. 

  At this point one question can be asked: is a 2D-PC more efficient than a 1D-

one for enhancing optical nonlinearities? At first sight, since there is less nonlinear 

material in a conventional air-semiconductor 2D-PC than in a 1D-PC, the only possibility 

for a better nonlinear efficiency of the 2D-PC lies in the potentiality of getting a higher 

local field in an optimized 2D-PC. Due to the hardness of fabrication of such PC’s a 

preliminary theoretical study is evidently wished. Several methods have been used to 

solve nonlinear propagation problems in 2D-PC’s: the finite-difference time-domain 

(FDTD) often used to calculate band displacements due to Kerr effect [16-19], the Fourier 

factorisation of nonlinear Maxwell equations with application to Kerr effect [20, 21], the 

variational method for the description of optical solitonic waves [22] or tunable super 

prism effect [23], the Bloch mode method [24-26] or the effective field methods summing 
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over several Bloch modes of about the same wavevector [27, 28]. All these methods 

provide good numerical results when applied to particular 2D-PC, but due to their 

complexity, it is difficult to derive general statements for optimizing the pattern of the 2D-

PC. 

  In this article, we propose a particular 2D-PC which is potentially interesting 

since it benefit from a degeneracy of the band edge wavelength for different diffracted 

beams. For the theoretical analysis of this 2D-PC we use a simple method based on 

coupled-waves for the calculation of the local field and the degenerate four-wave mixing 

near this degenerate band edge wavelength.  

Section II describes the 2D-PC considered in this study for the degeneracy of 

its band edge and provides the Fourier expansion of its linear and nonlinear optical 

susceptibilities. Section III considers the linear propagation in the 2D-PC in the particular 

case when the wavelength of the incident beam is located in the vicinity of the PC band 

edge. The simple calculations used in our approach are presented and results are discussed 

concerning the value of the local intensity inside the 2D-PC. The study is enlarged to 

nonlinear propagation in section IV in the case of degenerate four-wave mixing. In this 

section calculation of the conjugate reflectivity for the considered configuration of the 

different beams is developed and results analyzed in comparison with those obtained for a 

1D-PC of the same thickness. Finally, Appendix I is devoted to the justification of the 

coupled-wave approximation used all along our analysis. 

II.  The 2D Photonic Crystal 

In order to benefit from the degenerate band edge we consider in this paper the 2D-PC 

shown in figure 1.A. This 2D-PC is infinite in the x direction and has a thickness L in the z 

direction. Such a photonic crystal can be obtained by etching of a material of refractive 

index n1 with the etched part filled by a material of refractive index n2. This PC results 
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from the etching of two tilted gratings of the same period Λ=e1+e2 and the same filling 

factor e1/ Λ with wavevectors K1 and K 2  tilted by angles +α and –α with respect to the z 

direction respectively. These gratings are shown in dotted lines in figure 1.A. The 2D-PC 

is therefore composed of diamond-shaped pins of refractive index n1 located in a sea of 

refractive index n2 arranged following a centred rectangular lattice. The primitive lattice 

cell shown in figure 1.B is a rectangle with dimensions )cos(/ αΛ  and )sin(/ αΛ  along the 

z and x directions respectively. The diamond of diagonals )cos(/1 αe  and )sin(/1 αe located 

at the centre of the cell and the triangles of sides ))cos(2/(1 αe  and ))sin(2/(1 αe occupying 

its four corners have the refractive index n1, the remaining part of the unit cell exhibiting a 

refractive index n2. Taking the periodicity of the 2D-PC into account the linear 

permittivity ),( xzε  and the nth order nonlinear susceptibility ),()( xzχ
n  can be 

decomposed using Fourier series following the relation 

   ( ) [ ] 















∑ +=

L

z
ΠxKNzKNiξxzξ

xNzN
xxzzxNzN

,
, exp,   (II.1) 

With εξ =  or χ n)( . In equation II.1 Nz and Nx are positive, negative, or null integers, 

ΛαπK z /)cos(2=  and ΛαπK x /)sin(2=  are the modulus unit cell wavevectors in the 

reciprocal space, and 1)/( =LzΠ  for Lz ≤≤0  and 0)/( =LzΠ  elsewhere. The (Nz, Nx) 

order Fourier component ξ NN z x
 given by 

   ( ) ( )xKNzKNixzξ dxdzξ xxzz
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αΛ
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where ξ1 and ξ2 are the values of ( )xzξ ,  in the materials of refractive indices n1 and n2 

respectively. As expected from the symmetry of the unit cell, 

ξξξξ NNNNNNNN xzxzxzxz ,,,, === −−−− . Note also that 0, =ξ NN xz
 if  NN xz −  is odd and 

that ξ NN xz,  reduces to 

       


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−
=±

Λ

e
Nπ
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e

Nπ

ξξ
ξ z

z
zz NN

1121
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for NN zx ±= . 

Let as note also that, in order to separate band edge effects which are our prime interest in 

the present analysis from Fabry-Perot resonances, the 2D-PC is assumed to be surrounded 

by a medium of refractive index εn 000 = , or, equivalently anti-reflexion coated or 

slightly prismatic. In such a way there is no unwanted reflexion at the boundaries which 

might artificially enhance the field intensities. 

 

III.  Linear propagation and local intensity 

For the sake of simplicity we consider here isotropic diffraction of an incident beam 

),( xzER  polarized orthogonally to the incidence plane (i.e. in the y direction) with all the 

possible diffracted waves also polarized along the y direction. The total electromagnetic 

field ),( xzE  inside the sample ( Lz ≤≤0 ) writes then: 

),(),(
'

'
xzExzE

N
ND∑=     III.1 

where, for 0'=N , rkiêAxzExzE RRRD .exp),(),(
0

==  is the incident field of 

polarization vector ê, complex amplitude AR  and wavevector kR = k cosθR
ˆ z + sinθR

ˆ x ( ), 
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and EDN '
= êADN '

exp ikDN '
r( ) is the N’th order diffracted wave of complex amplitude ADN '

 

and wavevector [ ]xθzθkk
NDNDND ˆsinˆcos ''' +=  (see figure 2). λnπk /2 0=  is the modulus 

of each wavevector kDN '
 with λ the incident beam wavelength and εn 000 = the mean 

refractive index of the 2D-PC. 

  In the following the slowly varying envelop approximation (SVEA) is used for 

the description of beam propagation although large local field factors are predicted in 

section III.4. at the band edge of the short length 2D-PC considered in our analysis. In 

fact, this SVEA approximation is valid in a medium possessing the translational symmetry 

in the x-direction because, as long as, as shown here after (see equations III.6) the read 

and reflected Bragg waves are considered in our analysis. Indeed, these diffracted beams 

play the role of the counterpropagating waves existing when the SVEA is not made [29]. 

The validity of such an approximation at the band edge of 1D-PC’s was already proven in 

Ref. 13. The propagation equation of the amplitude ADN '
 then writes: 

( )[ ]xKNzKNrkkiAεAki xxzzNNN
z xN xNN DDD

N N
NN zDD

++−∑ ∑∑=∇ .exp.2
'""

"
''

 III.2 

The grating being infinite in the x direction, phase-matching is required along this 

direction, which gives: 

( )[ ] 0sin)sin(
'"

=+− KNθθk xxNN DD     III.3 

Equation III.3 means that diffracted waves of orders N’ and N”  are coupled through the 

order Nx  of the 2D-grating along the x direction and to all the grating orders along the z 

direction. The phase mismatch is then along the z direction only and writes: 

( )LθθkLKNLk∆ DDNNN z NNzzx '"
coscos,,' −+=    III.4 

III.1. Small phase-mismatch approximation at the PC band edge 
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Relation III.3 also holds for 0" =N corresponding to the incident wave so that diffracted 

waves are emitted in transmission and in reflexion in directions 

( )
0

0
'

sin
2sin

sin θθ
λ

αλN
Arcθ R

x
ND =








+=  and 0'

θπθ
ND −= respectively. In the 

following, we will restrict ourselves to the most interesting case when the diffracted 

orders corresponding to 1±=Nx  are at the degenerate band edge of the 2D-PC. Indeed, as 

shown in Appendix I only these waves exhibit the high local intensities required for 

nonlinear optics.  

Two conditions are necessary for a strong coupling between incident and 

diffracted waves: a high Fourier coefficient ε NN z x,  and a quasi-perfect phase matching 

( 0,,' ≈Lk∆ NNN z x
). As shown by equation II.4 the highest possible coupling occurs 

through the 1±=Nz  components 




−==±±
Λ

e
π

Λ

e
π

εε
εε

1121
111,1 sin  of the Fourier series 

describing ),( xzε . We therefore consider a 2D-PC of periods αΛ cos/  and αΛ sin/  such 

as the phase-mismatch Lk∆ 1,1,0 ±  is null for 1=Nz  at the centre of the degenerate 

forbidden band for a read beam of wavelength λ0  orthogonally incident ( 0=θR ) onto the 

2D-PC. In such a situation, λ0 , Λ, and α are linked through the relation: 

λ0 = 2Λneff cosα      III.5 

In the small phase-mismatch approximation used in our analysis, due to relation III.5, only 

the waves diffracted in reflexion in orders 1±=Nx  are considered. Other diffracted waves 

(in transmission and reflexion) present large phase mismatches and are safely neglected. 

In the same manner, only orders 1±=Nz  are considered in our calculations. Although 

they must be taken into account in particular for an exact determination of the band edge 

wavelength, because they exhibit large phase mismatches, they can be safely neglected 
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too. The validity of this small phase-mismatch approximation is discussed in details and 

proved in Appendix 1. 

  III.2. Reflectivity 

In the small phase-mismatch approximation the coupled propagation equations derived 

from equation III.2 writes: 

[ ]zk∆iAzk∆iA
θλn

πεi

dz

dA
DD

Reff

R
2211

11 expexp
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+=   III.6.a 

zk∆iA
θλn

πεi

dz

dA
D

Deff

D
11

1

111 exp
cos

−=     III.6.b 
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= π − Arcsin sinθR + λsinα
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 
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 

 
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representation equations III.6.a to c write 
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Resolution of the matrix differential equation III.7 is performed through the diagonalization of 

the matrix M by using the basis change given by the matrix 

                                                 

















=

zzz

yyy

xxx

P

321

321

321

      III.9 

With ),,( zyx iii  the components of the eigenvectors of the new basis. In the new basis, 

equation III.7 writes 

DB
dz

dB =       III.10 

With APB 1−=  and MPPD 1−=  the diagonal matrix representing the M matrix in the new 

basis. Integration of equation III.10 with the limit conditions ( ) 00 RR EA = , ( ) 0
1

=LAD , and 

( ) 0
2

=LAD  together with a reciprocal basis change allows to deduce the transmission TR and 

reflectivities R1 and R2 of the device 

( ) 2
0

2
32321211

2
0

2
/expexpexp/ RRRRR ELλBxLλBxLλBxELET ++==       III.11.a 

( ) ( ) ( ) 2
0

2
231211

2
0

2

111 /cos/cos/0cos/cos RRRRDR EByByByθθEEθθR DD ++==    III.11.b 

( ) ( ) ( ) 2
0

2
231212

2
0

2

222 /cos/cos/0cos/cos RRRRDR EBzBzBzθθEEθθR DD ++==   III.11.c 

With BR, B1, and B2 the components of the B vector solutions of the system of equations 

provided by limit conditions: 

x1BR + x2B1 + x3B2 = ER0

y1BR expλ1L + y2B1expλ2L + y3B2 expλ3L = 0

z1BR expλ1L + z2B1expλ2L + z3B2 expλ3L = 0

 
 
 

  
   III.12 
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And λi (i=1,3) the diagonal elements of D. 

  In the general case the transmissions and reflectivities are numerically 

computed. However, in the case when the read beam is normal to the 2D-PC, the diffracted 

beams are symmetrical with respect to the incident beam and analytical solutions are found 

for TR and R1 and R2: 

( )
2

2

0 2

4

Lβksh∆iLβchβ

β

E

LA
TT

R

R
R

+
===             III.13.a 

( ) 2
2
0

2

0

2,1
21

2
2

0
'2cos

Lβksh∆iLβchβ

Lβsh
β

E
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αRRR

R

D

+
====            III.13.b 

Where β 2 = β0
2 − ∆k2

4
, 

'cos

2
22

2
1

2
2
0

αλn

επ
β

eff

= , 
  
α '= 1

2
Arcsin

λsinα
Λ neff

 

 
  

 

 
  , and 

( )'cos
2cos2

α
λ

n π

Λ

απ
k∆ eff+= . 

Note that, as it must be, energy is preserved since one gets 2R+T=1 for the analytical solution 

given by equations III.13.a-b as well as R1+R2+TR=1 for the numerical one provided by 

equations III.11.a-c. 

III.3. Local Intensity 

The local field inside the 2D-PC is given by 

E z,x( )= AR z( )expikR.r + AD1
z( )expikD1

.r + AD2
z( )expikD2

.r   III.14 

With 

AR z( )= x1BR expλ1z+ x2B1expλ2z+ x3B2 expλ3z( )expi
∆k1 + ∆k2

4
z          III.15.a 

AD1
z( )= y1BR expλ1z+ y2B1expλ2z+ y3B2 expλ3z( )expi

∆k2 − 3∆k1

4
z          III.15.b 

AD2
z( )= z1BR expλ1z+ z2B1expλ2z+ z3B2 expλ3z( )expi

∆k1 − 3∆k2

4
z          III.15.c 

The local intensity is then given by I z,x( )= E z,x( )2
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III.4. Numerical Results 

In this section the incident beam is sent perpendicularly onto the 2D-PC described in section 

II. All the calculations were performed using 43.102
11 == nε , 12

22 == nε , α=20 degrees for a 

sample of length L=4µm. In order to give an insight into the potential optimization of the 

device for applications, the band-centre wavelength λ0 was adjusted so that the upper or lower 

band edge wavelength λB=1500nm.  

The influence of the filling factor Λe /1  on the normalized mean local intensity 

( )∫ ∫= +
−

)sin(/2/
)sin(/2/ 00 ),())sin(/(1 αΛ

αΛ

L
L zxdzIdxαΛLII was studied for both upper and lower band 

edges. The result is presented in figures 3.A and B together with the grating wavelength 

))cos(2/(0 αnλΛ eff=  for the cases of lower and upper bad edges respectively. In both cases, 

due to the increase of the effective index of refraction consecutive to the lower volume of the 

etched part of the 2D-PC, the grating wavelength decreases with increasing values of Λe /1 . It 

can also be observed from figure 3 that the filling factor plays an important role in enhancing 

the local intensity with a maximum around 5.0/1 =Λe  in both cases. Figure 3 also shows that 

the mean local intensity is much larger on the upper band edge of the 2D-PC. This is directly 

connected to the larger number of periods obtained in this case for the same device length. 

This means that better results are expected in the nonlinear regime when the upper band edge 

of the 2D-PC is considered. As a consequence, only this case with an optimized filling factor 

( 5.0/1 =Λe ) is considered in the following. 

Due to the symmetry of the problem, for an incident beam orthogonal to the 

2D-PC both diffracted beams exhibit the same reflectivity. Figure 4.A shows the reflectivity 

spectrum of one of these two identical diffracted beams together with that of the normalized 

mean local intensity IL. At low wavelengths, the reflectivity of each diffracted beam tends 

towards one half and the device is totally reflecting with two equal intensity diffracted beams. 
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At the band edge occurring at 1500 nm the reflectivity drops to zero and the mean normalized 

local intensity is maximum. Note that the resonance leads to high local intensities (IL=34) and 

to narrow bandwidths (∆λ= 3.3nm) which can be useful for optical filtering or WDM optical 

signal processing. 

Figure 5 shows the spatial repartition of the local intensity inside the 2D-PC. The pattern 

which is infinite in the x-direction is only represented between x=0 and x=4 µm in the figure. 

Local intensity is patterned following the 2D-PC etching with maximum at the centre of the 

device in the z-direction with intensity almost 200 times larger than the incident intensity 

which is a great promise of efficiency for nonlinear optical processes. It is also important to 

note that much higher local field intensities can be obtained using longer PC’s, but with 

somewhat narrower frequency bandwidths. 

 

IV.  Degenerate Four-wave Mixing 

 Four-wave mixing is used for characterizing the local field induced enhancement of the third 

order optical nonlinear susceptibility [12] and to compare the efficiency of 2D-PC for this 

purpose to the case of already known 1D-PC [13]. 

IV.1. Optical configuration 

The optical configuration considered in this section is shown in figure 6.A and B. Figure 6.A 

represents the beams incident onto the 2D-PC and the beams that outcomes from this PC, 

while the wavevectors of the different waves present in the sample are indicated in figure 6.B. 

The two counter propagating incident pump wave )0(ERF  and )(LERB are 

orthogonal to the 2D-PC and give rise to six pump waves inside the PC. These six waves are 

counter propagating two by two: the forward and backward reference waves (ERF  and ERB ) 

due to the transmission of the incident pump waves and the waves (EDF1
and EDB1

, and 
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EDF2
 and EDB2

) diffracted by the reference waves (see the corresponding wavevectors in 

figure 6.B). The incident signal beam )0(ES  gives rise to three signal waves (ES , ESD1
, and 

ESD2
) and three conjugate waves (EC , ECD1

, and ECD2
) counter propagating to (ES , ESD1

, 

and ESD2
) respectively. 

In the following, calculations performed for the determination of the 

propagation of the different waves are presented before giving some numerical results and 

comparing these results with those obtained when using 1D-PC. All the calculations were 

performed in the fully parametric approximation of no significant pump depletion and signal 

amplification. Note that this approximation is always possible when considering the four-

wave mixing process provided the pump and signal incident intensities are low enough. This 

approximation also allows describing the pump and signal propagation in the linear regime in 

order to show the local field enhancement of the third order nonlinear susceptibilities with no 

spurious effects. At higher pump intensities Kerr effect induced self phase modulation and 

cross phase modulation are evidently expected. These processes could also be treated using 

the formalism described in this paper. 

IV.2. Pump wave propagation 

The amplitudes of the pump waves ERF , EDF1
, and EDF2

issued from the forward 

propagating incident pump beam are directly derived from results of section III.2 with 

θRF=θR=0. The amplitudes of the pump wavesERB, EDB1
, and EDB2

issued from the forward 

propagating incident pump beam are also derived from results of section III.2, but with θRB=π, 

replacing KZ by -KZ, and using adequate limit conditions 

( ELE RBRB 0
)( = , 0)0(

1
=EDB , 0)0(

2
=EDB ). One gets then: 
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( )πjBFI                                                                                               

z
jk∆jk∆

izjλjBjz                                    

zjλjBjzzjλjBjzzA

RIRI

R
j

DI

,0;,

4

)(3)(
exp)(exp)()(

)(exp)()()(exp)()(

21
323

21211
)(
2

=≡










 −
+

+=

          IV.1.c 

With [ ]RIDI
eff

θθ
λ

nπ

Λ

απ
k∆ RI coscos

2cos2
2,12,1

−+= , ),( BFI ≡  

IV.3. Signal wave propagation 

Signal waves ES , ESD1
, and ESD2

 are also given by equations IV.1.a-c if using θj S=  and 

SRI ≡  and SDDI ≡ . 

IV.4. Conjugate wave propagation 

Conjugate waves EC , ECD1
, and ECD2

 are coupled to each other by the 2D-PC and to signal 

waves ES , ESD1
, and ESD2

 through four-wave mixing with the pump waves ERF , EDF1
, 

EDF2
, ERB, EDB1

, and EDB2
. Since the conjugate waves are counter-propagating to the 

signal waves, the propagation equations of their amplitudes ,AC  ACD1
, and ACD2

 are then 

given by: 

       

[ ]

[ ] *
2211

)3(
2

22111

cos

4

expexp
cos

SDBDFDBDFRBRFeff
Seff

SCDSCD
Seff

C

AAAAAAAχ
θλn

πi
                                

zk∆iAzk∆iAε
θλn

πi

dz

dA

++−

−+−−=

            IV.2.a 
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[ ]

[ ] *
12211

)3(

1

2

11

1

1

cos

4

exp
cos

SDDBDFDBDFRBRFeff

DSeff

SC
SDeff

CD

AAAAAAAχ
θλn

πi
                                

zk∆iAε
θλn

πi

dz

dA

++−

−=

          IV.2.b 

     

[ ]

[ ] *
22211

)3(

2

2

21

2

2

cos

4

exp
cos

SDDBDFDBDFRBRFeff
SDeff

SC
SDeff

CD

AAAAAAAχ
θλn

πi
                                

zk∆iAε
θλn

πi

dz

dA

++−

−=

          IV.2.c 

Where χχeff
)3(
0,0

)3( =  as given by equation II.3.a. The first term of the right hand side of 

equations IV.2.a-c corresponds to Bragg diffraction (as in section III.6) and the second one to 

the four-wave mixing process. Setting AS = aS expi
∆kS1 + ∆kS2

4

 
 
 

 
 
 z, 

AC = aC exp− i
∆kS1 + ∆kS2

4

 
 
 

 
 
 z, ASD1

= aSD1
expi

∆kS2 − 3∆kS1

4

 
 
 

 
 
 z, 

ACD1
= aCD1

exp− i
∆kS2 − 3∆kS1

4

 
 
 

 
 
 z, ASD 2

= aSD 2
expi

∆kS1 − 3∆kS2

4

 
 
 

 
 
 z, and 

ACD 2
= aCD 2

expi
∆kS1 − 3∆kS2

4

 
 
 

 
 
 z, equations IV.2.a-c can be written in matrix form: 

’
CCC AAA += CM

dz

d
     IV.3 

With 
















=

2

1

CD

CD

C

a

a

a

CA  and 
















=
'

2

'
1

'

CD

CD

C

F

F

F
’
CA  where 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )zazAzAzAzAzAzA
θλn

χπi
zF SDBDFDBDFRBRF

Seff

eff
C

*
2211

)3(2
'

cos

4
++−=              IV.4.a 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )zazAzAzAzAzAzA
θλn

χπi
zF SDDBDFDBDFRBRF

SDeff

eff
CD

*
12211

1

)3(2
'

1 cos

4
++−=         IV.4.b 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )zazAzAzAzAzAzA
θλn

χπi
zF SDDBDFDBDFRBRF

SDeff

eff
CD

*
22211

2

)3(2
'

2 cos

4
++−=       IV.4.c 
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In equation IV.3, the matrix MC writes 

( )

( )

( )
























−−

−−

−−+

=

21

2

1

12

1

1

11
21

3
4

0
cos

03
4cos

coscos4

SS

DSeff

SS

DSeff

SeffSeff
SS

C

k∆k∆
i

θλn

πεi

k∆k∆
i

θλn

πεi
θλn

πεi

θλn

πεi
k∆k∆

i

M   IV.5 

As in the case of the linear propagation of pump and signal waves, resolution of the matrix 

differential equation IV.3 is performed through the diagonalization of the matrix MC by using 

the basis change given by the matrix 

                                                 PC =
xC1 xC2 xC3

yC1 yC2 yC3

zC1 zC2 zC3

 

 

 
 
 

 

 

 
 
 
     IV.6 

With  zyx CiCiCi ,,  (i=1,2,3) the components of the eigenvectors of the new basis. 

The conjugate intensities write then: 

)0()0()0()0(
23121

2
bxbxbxI CDCCDCCCC ++=              IV.7.a 

S

SD

θ

θ
LbyLbyLbyLI CDCCDCCCCD cos

cos
)()()()( 1

2

1 23121 ++=             IV.7.b 

S

SD

θ

θ
LbzLbzLbzLI CDCCDCCCCD cos

cos
)()()()( 22

2 23121 ++=             IV.7.c 

With 

( ) ( ) ( )[ ] zλdzzλzFKzb C
z

CCCC 10 1 exp')'exp('0 ∫ −+=  

( ) ( ) ( )[ ] zλdzzλzFKzb C
z

CCDCDCD 20 2111
exp')'exp('0 ∫ −+=  

( ) ( ) ( )[ ] zλdzzλzFKzb C
z

CCDCDCD 30 3222
exp')'exp('0 ∫ −+=  

Where λCi (i=1,2,3) are the eigenvalues of matrix MC and where 
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

















=


















−

)(

)(

)(

)(

)(

)(

'
2

'
1

'

1

2

1

zF

zF

zF

P

zF

zF

zF

CD

CD

CD

CD

C

C

C

 

The constant matrix 



















=

)0(

)0(

)0(

2

1

K

K

K
K

CD

CD

C

 is determined by using the limit conditions aC L( )= 0, 

( ) 00
1

=CDa  et ( ) 00
2

=CDa . 

IV.5. Numerical result 

All the results presented in this section were calculated for a maximum local intensity for the 

pump beam, i-e, for wavelengths lying in the vicinity of the upper band edge of the forbidden 

gap and using a filling factor e1/Λ=0.5 and a grating period Λ=319nm. Figures 7.A-D show 

the conjugate reflectivity spectra ( ) ( ) 22
00 SCC IIρ = , ( ) ( ) 22

11
00 SIIρ CDCD = , and 

( ) ( ) 22

22
00 SIIρ CDCD = plotted in semi-logarithmic scale for incidence angles of the signal 

beam of 0, 1, 2, and 3 degrees respectively. As expected, high conjugate reflectivity peaks are 

predicted at the band edge of the 2D-PC. The large decrease of the conjugate reflectivities 

(several orders of magnitude) observed for small detunings from the band edge wavelength 

confirms the huge enhancement of local nonlinear susceptibilities at the band edge of PCs. 

Due to symmetry the conjugate reflectivities of the diffracted signal beams are identical when 

the signal beam is perpendicular to the 2D-PC, which is not the case for signal incidence 

angles of 1, 2, and 3 degrees. It can also be noted from figures 7.A-D that each of the 

diffracted conjugate beams exhibits a reflectivity which is about half of the direct conjugate 

beam, as expected from the splitting of the incident signal beam in two equal diffracted beams 

inside the 2D-PC. 

 It should be noticed that, at the band edge wavelength, there are conjugate outputs of 

the diffracted beams of the signal beam although there is none of these diffracted beams. 
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Indeed, destructive interferences occur for these diffracted beams due to the presence of the 

signal input beam. This is not the case for the conjugate beams which are generated inside the 

2D-PC so that diffracted conjugate beams are emitted with about the same intensity as that of 

the signal conjugate beam. This behavior is quite similar to that occurring in a symmetrical 

laser cavity where only the amplified transmitted beam exists when such a cavity is operated 

below threshold as an intracavity amplifier while two outputs of equal intensities are observed 

in the laser operation of this symmetrical cavity. 

 Figures 7.A-D also demonstrate the high spectral and spatial selectivity of the 2D-PC, 

with decreases by more than one order of magnitude for detunings of 2 nanometers or 2 

degrees. This property is very encouraging for the application of such devices to multiplexed 

optical signal processing. 

IV.6. Comparison with a 1D-PC 

The huge enhancement of nonlinear processes reported in this paper for 2D-PC’s using a 

Fourier technique was also underlined previously for 1D-PC’s using the transfer matrix 

method [13]. In the following a comparison of the performances of 1D- and 2D-PC’s is 

described. For this comparison the same global device is considered. The two PC’s are etched 

in a semiconductor material (dielectric permitivities 43.102
11 == nε  and 12

22 == nε ) of length 

L=4µm; the band centre wavelength λ0 is adjusted so that the upper band edge wavelength is 

λB=1500nm, and the filling factor is adjusted for maximum mean local intensity inside the 

PC’s. Moreover, in both cases the signal beam is orthogonal to the device. Figure 8 shows the 

conjugate reflectivity of the signal beam for the 1D- and the 2D-PC (dashed and continuous 

lines respectively). Note that the diffracted conjugate beams existing in the 2D-PC are not 

considered in figure 8. The wavelength selectivity of the device is almost the same for the two 

PC’s with a sharp resonance peak of conjugate reflectivity around the band edge at 1500nm. 

However, the conjugate reflectivity of the signal beam is about 20 times larger for the 2D-PC 
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than that predicted for the 1D-PC. This large enhancement definitely demonstrates the 

favourable influence of the degeneracy of the band edge of the 2D-PC on the efficiency of 

nonlinear processes. Note that the global enhancement is even three times higher when 

considering the sum of the three conjugate beams emitted in the case of the 2D-PC. These 

considerations clearly means that the 2D configuration of the CP must be chosen carefully in 

order to maximize the nonlinear effect, which can be easily performed by using the theoretical 

approach described here. 

 

V. Conclusion 

A simple model based on the Bragg coupled equations has been developed for the description 

of the linear and nonlinear propagation of light in 2D-PC’s. This model has been successfully 

applied to the particular case of a specific 2D-PC designed for exhibiting a degeneracy of its 

band edge in the direction of the two diffracted beams. The validity of the simple analytical 

model developed was demonstrated in this particular case. As the method used for the 

verification is quite general, it must be stressed that the model may be applied to any 2D-PC, 

which makes the analysis developed in this paper quite general. 

  The specific choice made for the 2D-PC has led to very high mean local 

intensities (particularly for the upper band edge of the 2D-PC) and to huge improvements of 

the phase conjugate reflectivity resulting from the degenerate four-wave mixing process 

considered for the nonlinear interaction. The advantage of this 2D-structuration has been 

underlined by the comparison of the 2D-PC to a standard 1D-PC with three phase conjugate 

beams of individual intensity about 20 times larger than that of the single phase conjugate 

beam obtained with a 1D-PC. Evidently, such a property could be very interesting for high 

efficiency operation of high fan-out optical circuits for optical signal processing. 
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VI.  Appendix I: Validity of the coupled wave approximation 

In the coupled wave approximation used in section III, three waves are considered: the read 

wave of complex amplitude AR and the two Bragg diffracted waves of complex amplitudes 

AD1
 and AD2

. The diffracted wave EDN
 of wavevector kDN

 is then coupled to these three 

waves by the propagation equation 

( ){

( )
( ) } ( )TrRfj    zNNk∆iAε                                         

zNNk∆iAε                                         

zNNk∆iAε
θλn

πi

dz

dA

xz
j

DDxNzN

xz
j

DDxNzN

zN
xz

j
RRxNzNj

xNDeff

j

xND

,,exp

,exp

,exp
cos

)(
221;

)(

111;

0

)(
;)(

)(

=−+

−+

∑ −=

−−

+−

≠

    A.1 

With 

∆kR
( j ) Nz,Nx( )= k cosθDNx

( j ) − cosθR( )+ NzKz                A.2.a 

∆kD1

( j ) Nz,Nx( )= k cosθDNx

( j ) − cosθD1( )+ NzKz    A.2.b 

∆kD2

( j ) Nz,Nx( )= k cosθDNx

( j ) − cosθD2( )+ NzKz    A.2.c 

And 

θD−1

(R) = θD1
= π − Arcsin sinθR + λsinα

Λneff

 

 
 

 

 
  

θD1

(R) = θD2
= π − Arcsin sinθR − λsinα

Λneff

 

 
 

 

 
  

Equation A.1 considers both the transmitted waves A Tr

NxD
)(  and the reflected ones A Rf

NxD
)(  for 

1±≠Nx  where the incidence angles are given by 












−=

eff
xR

Tr

xND nΛ

αλ
NθArcθ

sin
sinsin)(  












−−=

eff
xR

Rf

xND nΛ

αλ
NθArcπθ

sin
sinsin)(  
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As it was made in section III only the wavelength zone lying around the upper band 

edge was considered here since it provides the best performances for the device. Moreover, as 

in section III, we considered the case of an incident beam sent quasi-perpendicularly to the 

2D-PC ( 0)sin( ≈θR ). For λ=1.5µm, 871.0//sin =nΛαλ eff  and only orders 1±=Nx  (in 

reflexion and in transmission) are possible. As a consequence, only the amplitudes A Tr
D

)(
1−
 and 

A Tr
D

)(
1+
 of the transmitted diffracted waves are considered. Moreover, as e1/Λ=0.5 for a 

maximum local intensity in the PC the non-zero Fourier components are given by the simpler 

equation II.4. Equation A.1 was numerically integrated for both A Tr
D

)(
1−
 and A Tr

D
)(
1+
 when 

limiting the expansion in NZ to the third order ( 3≤NZ ). The correction due to the fifth order 

( 5±=NZ ) was also calculated using equation A.1. The validity of the coupled-wave 

approximation was tested by the calculation of the local intensities 

dzzALII
LTr Tr

DLD ∫= ±± 0

2

0
)(

1
)()/1(

1
 normalized to the local intensity given IL calculated in section 

III. 

Figure 9 shows spectra of the third and fifth order corrections to the total local 

intensity due to the transmitted 1±=Nx  diffraction orders. It must be underlined that the error 

is very low (less than 1%) in the vicinity of the band edge wavelength where the local 

intensity is maximum in the 2D-PC. This definitely proves the reliability of the approximation 

made in section III. This result also strongly confirms that the simple analysis developed in 

this article can be successfully applied to any nonlinear 2D-PC (0.7% and 0.1% for the third 

and fifth orders corrections respectively at the band edge wavelength). This means that as far 

as nonlinear properties of the 2D-PC at its band edge is concerned, only the incident and 

Bragg diffracted waves must be considered, which definitely simplifies the analysis which can 

be even analytical, leakage waves due to higher order diffracted waves being calculated 

numerically in the linear regime. 
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Figure Captions 

 

Figure 1. Schemes of the 2D-PC (A) and of its unit cell (B). Dashed lines in figure A 

correspond to the tilted 1D-PC’s giving rise to the 2D-PC. OZ and OZ’ are orthogonal to 

these gratings. 

Figure 2. Configuration of the read and nth order diffracted wavevectors. 

Figure 3. Grating period (Λ) and normalized mean local intensity (IL) plotted as a function of 

the filling factor (e1/Λ) for the lower and upper band edge of the 2D-PC in figures A and B 

respectively. Note that the band edge wavelength is the same in figures A and B so that the 

band-centre wavelengths are different in the two calculations. 

Figure 4. Reflectivity and normalized mean local intensity (IL) spectra. 

Figure 5. (color online) Local intensity repartition in the 2D-PC for the upper band edge 

wavelength. 

Figure 6. Input and output beams (A) and inside wavevectors (B) in degenerate four-wave 

mixing in the 2D-PC. The grating wave vectors are only represented in the case of the -1 

order of diffraction of the forward pump wave.  

Figure 7. Phase conjugate reflectivity spectra of the 2D-PC for different incidence angles of 

the signal beam. The phase conjugate reflectivity is plotted for the signal beam (continuous 

line) and the -1 and +1 diffracted orders (dashed and dotted lines respectively). 

Figure 8. Comparison of the phase conjugate reflectivity spectra calculated for the 1D and 

2D-PC’s. Only the signal phase conjugate reflectivity is plotted for the 2D-PC. The phase 

conjugate reflectivity of the two diffracted signal beams which are of the same magnitude are 

not shown in the figure. 

Figure 9. Relative third and fifth order correction to the normalized mean local intensity 

plotted as a function of the signal wavelength. 
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