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In this article, we give a simple proof of the fact that the optimal collective attacks against continuous-variable
quantum key distribution with a Gaussian modulation are Gaussian attacks. Our proof, which makes use of
symmetry properties of the protocol in phase space, is particularly relevant for the finite-key analysis of the
protocol and therefore for practical applications.
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I. INTRODUCTION

Quantum key distribution (QKD) is a cryptographic prim-
itive allowing two distant parties, traditionally referred to as
Alice and Bob, to establish a secret key [1]. This key can later
be used to secure sensitive communication thanks to a one-time
pad, for instance. QKD has received a lot of attention lately as
it is the first application of quantum information science which
could be developed on a large scale. For instance, metropolitan
networks are certainly compatible with present technology,
as was recently demonstrated in Vienna with the SECOQC
project [2].

Historically, QKD protocols have used discrete variables,
meaning that Alice and Bob exchange information encoded on
a finite-dimensional Hilbert space such as the polarization of a
single photon. Hence, protocols such as the Bennett-Brassard
1984 protocol (BB84) [3] have been studied for a long time,
and their unconditional security is well established today [4], at
least in a scenario where side channels are not considered [5].

More recently, it was suggested that one could encode
information on continuous variables in phase space to perform
QKD [6]. Practical schemes requiring only coherent states
together with an homodyne detection were introduced by
Grosshans and Grangier in 2002 (GG02), first with direct [7]
and then with reverse [8] reconciliation, and later successfully
implemented [9,10]. These protocols were proven secure
against collective attacks [11,12], which are optimal in the
asymptotic limit [13]. Let us recall that the optimal collective
attacks are Gaussian attacks, meaning that the eavesdropper
operation corresponds to a Gaussian map.

The basic idea of the protocol GG02 is the following:
Alice draws two random numbers qA and pA with a Gaussian
probability distribution and sends the coherent state |qA + ipA〉
to Bob. Bob chooses a random quadrature and performs a
homodyne detection for that quadrature: He then obtains the
classical variable y, a noisy version of either qA or pA.
He finally informs Alice of his choice of quadrature. Alice
keeps her relevant classical variable, which she denotes as x.
Repeating this operation n times, Alice and Bob end up with
two correlated vectors x = (x1, . . . , xn) and y = (y1, . . . , yn),
from which they can distill a secret key by applying the usual
classical postprocessing composed of parameter estimation,

error reconciliation, and privacy amplification. Note that a
small variation of this protocol consists in performing a
heterodyne detection on Bob’s side instead of a homodyne
detection [14]. The security of this variant was investigated
in [15,16], where the optimal attack was given.

Other variations of this GG02 protocol consist in replacing
the Gaussian modulation with a discrete modulation [17–23]
or adding a postselection procedure to the protocol [24–28].

One main advantage of the protocols with a Gaussian
modulation but without postselection is that they display a
high level of symmetry. In particular, a specific symmetry of
these protocols in phase space was recently investigated in [29]
and appears to be a good approach in order to improve the
known lower bounds of the secret-key rate against arbitrary
attacks in the finite-size regime. Remember that Ref. [13]
proves that collective attacks are optimal in the asymptotic
regime thanks to a de Finetti–type theorem, which gives rather
conservative bounds when finite-size effects are taken into
account. A general framework for the finite-size analysis of
QKD was developed in [30], and the first numerical results
appear to be rather pessimistic [31], hence giving incentive
to improve known bounds, in particular with the help of
symmetries. Partial results in this direction, such as a de
Finetti–type theorem in phase space, were already obtained
in [32]. Whereas in [29], the authors examined the possibility
of using the specific symmetries of GG02 to prove the security
of the protocol against general attacks, our goal here is more
modest, as we show that these symmetries allow one to easily
recover known results concerning the optimality of Gaussian
attacks among all collective attacks. A difference between our
proof and previous techniques [11,12] is that it can be applied
in the finite-size scenario.

II. SECURITY PROOF AGAINST COLLECTIVE ATTACKS

The main idea of our proof is to use symmetries of the
protocol to simplify the analysis of its security. In general, the
security of a usual “prepare and measure” protocol where Alice
prepares and sends quantum states to Bob (coherent states
with a Gaussian modulation in the case of GG02) is analyzed
through an equivalent entangled version of the protocol. For
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GG02, this entangled version for Alice consists of preparing
two-mode squeezed vacua, measuring one mode of these states
with a heterodyne detection, and sending the other mode to
Bob through the quantum channel [33].

The security of the entangled protocol is then analyzed
through the n-mode bipartite quantum state ρAB ∈ (HA ⊗
HB)⊗n shared by Alice and Bob before they perform their
measurements. Here, HA and HB refer respectively to Alice’s
and Bob’s single-mode Hilbert spaces. Unfortunately, the total
Hilbert space (HA ⊗ HB)⊗n is usually too big to allow for a
complete analysis.

A solution is therefore to use specific symmetries of the
protocol in order to show that only a symmetric subspace
of (HA ⊗ HB)⊗n needs to be considered. Indeed, one can
show that if a QKD protocol is invariant under a certain
class of symmetries, say invariance under permutation of
the subsystems of Alice and Bob, then one can safely
assume that the quantum state ρAB displays the same
symmetry.

This might look a bit suspicious at first sight as one may
object that the eavesdropper is free to break the symmetry
of the state, hence invalidating the previous statement. The
way to solve this apparent paradox is to recall that, without
loss of generality, one can always assume that Eve is given
a purification |ψ〉ABE of ρAB . Since the protocol is invariant
under the group of symmetry G, Alice and Bob can consider
the state ρ̄AB , which is obtained by averaging their initial state
ρAB over the group G. As far as Alice and Bob are concerned,
applying the QKD protocol (measurements, parameter esti-
mation, reconciliation, and privacy amplification) to the state
ρ̄AB is indistinguishable from applying it to the state ρAB .
Now, because the state ρ̄AB is invariant under the action of G,
it is possible to find a purification |ψ̄〉ABE of this state such
that g|ψ̄〉ABE = |ψ̄〉ABE for all g ∈ G. This was proven in the
case of the symmetric group Sn in [4] and in the case of locally
compact groups in [34]. Then, it is shown in [34] that there
exists a completely positive trace-preserving map T mapping
|ψ̄〉ABE to |ψ〉ABE . Hence, the eavesdropper has at least as
much information when her state corresponds to the symmetric
purification |ψ̄〉ABE as when her state corresponds to the
(not necessarily symmetric) purification |ψ〉ABE . This means
that considering the state |ψ̄〉ABE is sufficient to evaluate the
security of the protocol. As a conclusion, Alice and Bob can
always assume that their bipartite state displays the same
symmetry properties as the QKD protocol.

In addition to using specific symmetries of the protocol,
one can simplify the security analysis further by restricting the
eavesdropper’s action to a certain class of attacks, for instance,
collective attacks. This means that the bipartite quantum
state shared by Alice and Bob is assumed to be independent
and identically distributed (i.i.d.), that is, that there exists a
probability distribution p(σAB) on HA ⊗ HB such that

ρAB =
∫

σ⊗n
ABp(σAB)dσAB. (1)

In the case of protocols such as BB84, which are invariant
under permutation of Alice’s and Bob’s subsystems, it is
useless to consider symmetries of the protocol when consid-
ering collective attacks since an i.i.d. state is clearly invariant
under permutation of its subsystems. The converse property

is not true in general. However, the exponential version of
the de Finetti theorem [35] and the postselection technique
introduced in [34] show that it also holds asymptotically.

In the case of continuous-variable QKD protocols, one can
consider a specific symmetry in phase space [29] which is
not strictly implied by collective attacks. The protocol GG02
is indeed invariant under conjugate passive symplectic oper-
ations applied by Alice and Bob. Physically, this invariance
means that the protocol is not affected when Alice processes
her n modes into any passive linear interferometer while Bob
processes his n modes into the passive linear interferometer
effecting the conjugate orthogonal transformation in phase
space. To see this, it is enough to show that the reconcili-
ation procedure as well as the parameter estimation would
perform equally well regardless of whether conjugate passive
symplectic operations are applied. Let us consider first the
reconciliation procedure, which consists of turning Alice’s
and Bob’s measurement results into identical bitstrings. Such
a procedure (see Ref. [36] for a specific example) is designed
to work in the case where Alice’s classical data follow a
Gaussian modulation and the correlation between Alice’s and
Bob’s data is measured by their covariance. Since passive
symplectic operations in phase space correspond to orthogonal
transformations for Alice’s and Bob’s measurement results,
neither the Gaussian modulation nor the covariance of the
data are affected, which guarantees that the reconciliation
procedure is transparent to such transformations. Concerning
the parameter estimation, which is used in particular to
compute Eve’s information, it is notable that for the protocol
GG02, only the covariance matrix of the state ρAB should be
estimated, and more specifically only the transmission and
excess noise of the quantum channel. Both these quantities
are invariant under any orthogonal transformation of the data.
This means that the state ρAB can safely be considered to be
invariant under conjugate passive Gaussian operations applied
by Alice and Bob.

Using this symmetry together with the assumption of
collective attacks leads to a simple proof that the optimal col-
lective attacks are Gaussian. More precisely, if the adversary
is restricted to perform a collective attack, Alice and Bob can
safely assume that this attack is Gaussian. To show this, it is
enough to prove that the state ρAB can be considered Gaussian.
Indeed, at the beginning of the protocol, Alice prepares n

two-mode squeezed states, which is a 2n-mode Gaussian state.
If the quantum state shared by Alice and Bob at the end of the
protocol is also Gaussian, it means that the quantum channel
can be described as a Gaussian map. Our proof is based on the
following lemma.

Lemma 1. If a bipartite 2n-modal quantum state ρAB (for
n � 2) is both i.i.d. and invariant under conjugate passive
Gaussian operations, then ρAB is a Gaussian state.

Proof. Let us first rephrase the lemma in phase-space
representation. Any state ρAB is completely characterized by
its Wigner function Wρ(x,p,y,q) where x,p are n-dimensional
vectors corresponding to Alice’s phase space and y,q cor-
respond to Bob’s phase space. The application of a passive
Gaussian operation on Alice’s modes and of its conjugate
operation on Bob’s modes maps the state ρ to the state ρ ′. The
Wigner function Wρ ′ (x,p,y,q) of ρ ′ is equal to Wρ(x ′,p′,y ′,q ′)
for the change of coordinates (x ′,p′,y ′,q ′) = ST (x,p,y,q) and
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the symplectic map S can be written as

S = S(X,Y ) ≡

⎛
⎜⎜⎜⎝

X Y 0 0

−Y X 0 0

0 0 XT −Y T

0 0 Y T XT

⎞
⎟⎟⎟⎠ (2)

where the matrices X and Y are such that [37]

XT X + Y T Y = XXT + YY T = 1 (3)

XT Y, XYT symmetric. (4)

In order to prove the lemma, we observe that if any such
map S leaves the Wigner function invariant, then W can only
depend on three parameters, which are ||x||2 + ||p||2, ||y||2 +
||q||2, and x · y − p · q (a proof of this fact can be found
in Appendix A). This means that there exists a function f :
R+ × R+ × R �→ R such that

Wρ(x,p,y,q) = f (||x||2 + ||p||2, ||y||2 + ||q||2,
x · y − p · q). (5)

Then, since ρAB is an i.i.d. state, the same must be true for f ,
meaning in particular that

f

(
n∑

i=1

x2
i + p2

i ,

n∑
i=1

y2
i + q2

i ,

n∑
i=1

xiyi − piqi

)

∝
n∏

i=1

f
(
x2

i + p2
i ,y

2
i + q2

i ,xiyi − piqi

)
, (6)

which is exactly the characterization of the exponential func-
tion. Hence, f and also W are exponential in ||x||2 + ||p||2,
||y||2 + ||q||2, and x · y − p · q, which means that the state
ρAB is a Gaussian state. This concludes our proof. �

The protocol GG02 is invariant under conjugate passive
symplectic operations applied by Alice and Bob. Hence, Alice
and Bob can safely assume that their state ρAB displays
the same symmetry. Restricting the analysis to collective
attacks, one can use Lemma 1 to conclude that the state
ρAB can be considered to be Gaussian. Since the initial state
produced by Alice, a (Gaussian) two-mode squeezed vacuum,
is transformed through the quantum channel into another
Gaussian state, this means that the action of the channel (i.e.,
of the attack) can be safely considered to be Gaussian, which
gives a simple proof that Gaussian attacks are optimal among
collective attacks.

III. CONCLUSION AND PERSPECTIVES

In this article, we gave an alternative proof that Gaussian
attacks are optimal against GG02 among all collective attacks.
This proof makes use of symmetries of the protocol in phase
space and does not require considering specific properties of
the entropy, as in previous proofs [11,12]. A natural question
is whether this technique can be exploited for variants of the
GG02 protocol.

Let us consider first protocols with a discrete modulation,
such as [22]. In this case, our proof cannot be applied
directly because protocols with a discrete modulation are less
symmetric than protocols with a Gaussian modulation. Indeed,
not all rotations in phase space leave the protocol invariant:

Only the orthogonal transformations leaving the modulation
unchanged, that is, transformations belonging to the symmetry
group of the hypercube, are relevant in this case. This group,
however, is much smaller that the group considered here, and
one cannot conclude directly that the state ρAB can be safely
considered to be Gaussian. Note that this is still true but has
to be proven with a different approach [22,23] based on the
extremality of Gaussian states [38].

The second class of protocols one could consider is
protocols with a postselection procedure [24–28]. These
protocols have not yet been proven secure against general
collective attacks because it is not known whether Gaussian
attacks are optimal among collective attacks. The technique
presented in this article cannot be used for protocols displaying
a postselection step as this postselection explicitly breaks the
symmetry of the protocol in phase space.

In addition to its simplicity, our proof turns out to be
particularly useful for the finite-size analysis of the security of
continuous-variable QKD protocols. Indeed, a specificity of
the finite-size analysis is that Alice and Bob cannot assume to
perfectly know the quantum state they share. For continuous-
variable protocols in general, this is in fact theoretically
impossible, as their state belongs to an infinite-dimensional
Hilbert space and therefore requires an infinite number of
parameters to be fully described. Fortunately, for protocols
such as GG02 where the state can safely be considered to be
Gaussian, Alice and Bob only need to know their covariance
matrix, which depends on three parameters: the modulation
variance, which is chosen by Alice, as well as the transmission
and the excess noise of the quantum channel. These parameters
are estimated by revealing part of Alice’s and Bob’s data. In
order to proceed with this estimation, one needs a statistical
model, and choosing a normal model seems quite natural.
However, previous proofs of Gaussian optimality presented
in [11,12] assume that the covariance matrix is known from
Alice and Bob and cannot justify the use of a normal statistical
model for its estimation. The proof presented here, on the
contrary, allows for such a justification (see Appendix B for
details).

The fact that our proof applies to finite-size analysis is
crucial as our ultimate goal is clearly to assess the security
of practical implementations, which are necessary finite. A
general finite-size analysis of continuous-variable protocols
will be the subject of future work.
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APPENDIX A: COMPLETE PROOF OF LEMMA 1

Before considering the general case of Wigner functions, let
us first consider the case of a probability distribution p(x,y),
which is invariant under orthogonal transformations applied
to both x and y. In other words, for any R ∈ O(n), one
has p(Rx,Ry) = p(x,y). Such a symmetry property clearly
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implies that p(x,y) can only depend on three parameters,
namely ||x||, ||y||, and x · y. With Wigner functions, the
argument is more subtle and is detailed here.

We show that any function W : Rn × Rn × Rn × Rn → R,
such that W (x,p,y,q) = W (ST (x,p,y,q)) for any symplectic
transformation S of the form given by Eq. (2), only depends on
the following three parameters: ||x||2 + ||p||2, ||y||2 + ||q||2,
and x · y − p · q.

Our goal is therefore to prove the following: for any pair of
quadruples (x,p,y,q) and (x ′,p′,y ′,q ′) such that⎧⎪⎨

⎪⎩
||x||2 + ||p||2 = ||x ′||2 + ||p′||2
||y||2 + ||q||2 = ||y ′||2 + ||q ′||2
x · y − p · q = x ′ · y ′ − p′ · q ′

, (A1)

one has W (x,p,y,q) = W (x ′,p′,y ′,q ′).
Let us introduce the following vectors:

a = x + ip, a′ = x ′ + ip′ (A2)

b = y − iq, b′ = y ′ − iq ′. (A3)

The condition (A1) can be rewritten as⎧⎨
⎩

||a||2 = ||a′||2
||b||2 = ||b′||2
Re〈a|b〉 = Re〈a′|b′〉

, (A4)

where Re(x) refers to the real part of x. It is sufficient to prove
that there exists an unitary transformation U ∈ U (n) such that
Ua = a′ and Ub = b′. Indeed, one can split U into real and
imaginary parts (U = X − iY ), and it is easy to check that
S(X,Y ) gives the correct change of coordinates. Since W is
invariant under this change of coordinates, one concludes that
W (x,p,y,q) = W (x ′,p′,y ′,q ′).

Let us introduce the following notations: A ≡ ||a||2 =
||a′||2, B ≡ ||b||2 = ||b′||2, and C ≡ Re〈a|b〉 = Re〈a′|b′〉.

Consider first the case where a and b are colinear.
This means that b = C/Aa and C = ±√

AB. Use the
Cauchy-Schwarz inequality, |C| = |a′ · b′| � ||a′|| · ||b′|| =√

AB with equality if and only if a′ and b′ are colinear.
This means that a′ and b′ are colinear and that b′ = (C/A) a′.
Because ||a|| = ||a′||, the reflexion U across the mediator
hyperplane of a and a′ is a unitary transformation that maps a

to a′. This reflexion also maps b to b′. This ends the proof in
the case where a and b are colinear.

Let us now consider the general case where a and b are
not colinear. It is clear that a′ and b′ cannot be colinear either.
We take two bases, (a,b,f3, . . . ,fn) and (a′,b′,f ′

3, . . . ,f
′
n),

of Cn and use the Gram-Schmidt process to obtain two
orthonormal bases, B = (e1, . . . , en) and B′ = (e′

1, . . . , e
′
n).

Note that vectors e1, e2, e′
1, and e′

2 are given by

e1 = a√
A

, e2 = b − 〈e1|b〉e1

||b − 〈e1|b〉e1|| (A5)

e′
1 = a′

√
A

, e′
2 = b′ − 〈e′

1|b′〉e′
1

||b′ − 〈e′
1|b〉e′

1||
. (A6)

Let us call U the unitary operator mapping B to B′. It is easy
to see that U maps a and b to a′ and b′, respectively. This
concludes our proof.

APPENDIX B: NORMAL STATISTICAL MODEL

In this section, we discuss briefly the problem of parameter
estimation in continuous-variable protocols with a Gaussian
modulation. This question is particularly relevant when one
is concerned with a finite-size analysis of the security of
the protocol (a more detailed presentation can be found in
[39,40]).

One of the main differences between the asymptotic and the
finite-size study of a protocol lies in the parameter estimation.
In the former case, one typically assumes that the quantum
state ρAB is known from Alice and Bob, while in the latter
case, this state needs being estimated.

For continuous-variable protocols with a Gaussian modu-
lation, it is known that Gaussian attacks are optimal (among
collective attacks) and therefore that the secret-key rate only
depends on the covariance matrix of ρAB . This means that
only this covariance matrix, that is, a finite number of
parameters, needs to be estimated in practice. Moreover, using
the symmetries described in this article, one can see that three
parameters are in fact sufficient, namely Alice’s and Bob’s
variances and their covariance. More precisely, the covariance
matrix �AB of the state ρAB can be assumed to have the
following form:

�AB =
(

X12n Zσz

Zσz Y12n

)
, (B1)

with σz = diag(1,−1,1,−1, . . . ,1,−1).
Furthermore, in a “prepare and measure” implementation

of the protocol, X simply corresponds to Alice’s modulation
variance, which is a priori known from Alice and Bob.
Hence, only two paramters remain to be estimated in practice.
Asymptotically, this is not a problem since one can assume
that the parameter estimation is done perfectly. However, for a
finite-size analysis, which is eventually required to prove the
security of a practical scheme, it is crucial to have an upper
bound on the error in the parameter estimation. Indeed, in an
adversarial scenario such as QKD, the legitimate parties should
always consider the worst covariance matrix compatible with
their data except with some small probability ε.

This can be easily done once a statistical model is given
for the data x = (x1, . . . , xn) and y = (y1, . . . , yn) observed
by Alice and Bob, respectively.

Whereas this could be done even without a model in the
case of bounded parameters such as the quantum bit error
rate for discrete-variable QKD protocols, this is much more
complicated for a priori unbounded parameters, such as the
excess noise in the GG02 protocol.

Then the demonstration given previously that the state ρAB

can be considered Gaussian has a crucial consequence: Since
the classical data x and y are obtained by performing Gaussian
measurements (either homodyne or heterodyne detection), the
joint distribution of (x,y) corresponds to some marginal of a
Gaussian Wigner function, and therefore it is also Gaussian.
As a consequence, the variables xi and yi (for i ∈ {1, . . . , n})
are related through

yi = αxi + zi, (B2)

where α is a constant and zi is a Gaussian random variable:
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zi ∼ N (0,σ 2), which is independent of xi . This is the
definition of a normal statistical model, where one tries to
estimate the values of α and σ 2. For such a model, one can
bound the errors made in the estimation of both α and σ 2 and

therefore on Y and Z (since these are simple functions of α

and σ 2). Finally, and this is a crucial step in finite-key analysis,
one can compute the worst key rate compatible with the data,
except with probability ε.
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