Volume Bragg grating external-cavity designs for coherent emission of an array of tapered diode lasers
David Pabœuf, Gaëlle Lucas-Leclin, Nicolas Michel, Michel Calligaro, Michel Krakowski, Patrick Georges

► To cite this version:

David Pabœuf, Gaëlle Lucas-Leclin, Nicolas Michel, Michel Calligaro, Michel Krakowski, et al.. Volume Bragg grating external-cavity designs for coherent emission of an array of tapered diode lasers. EOS Topical Meeting on Lasers, Sep 2009, Capri, Italy. hal-00534765

HAL Id: hal-00534765
https://hal-iogs.archives-ouvertes.fr/hal-00534765
Submitted on 10 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Volume Bragg grating external-cavity designs for coherent emission of an array of tapered diode lasers

David Pabœuf, Gaëlle Lucas-Leclin, Patrick Georges
Laboratoire Charles Fabry de l’Institut d’Optique, Palaiseau, France

Nicolas Michel, Michel Calligaro, Michel Krakowski
Alcatel Thales III-V Lab, Palaiseau, France

D. Pabœuf’s PhD is funded by the Délégation Générale de l’Armement
Outline

• Introduction
 – External cavity modelling
• Talbot external cavity
 – Principles
 – Numerical modelling
 – Experimental results
• Angular filtering external cavity
 – Numerical modelling
 – Experimental results
• Conclusion
Introduction

<table>
<thead>
<tr>
<th></th>
<th>Near Field (µm)</th>
<th>Far Field (radians)</th>
<th>Brightness (W/cm²/sr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 laser diode</td>
<td></td>
<td></td>
<td>[B_1 = \frac{P}{S_{em} \Omega} \propto \frac{P}{w \cdot \Delta \theta}]</td>
</tr>
<tr>
<td>N incoherent laser diodes</td>
<td></td>
<td></td>
<td>[B_N \propto \frac{w}{p} B_1 \leq B_1]</td>
</tr>
<tr>
<td>N coherent laser diodes</td>
<td></td>
<td></td>
<td>[B_N^{coh} = N \times B_1]</td>
</tr>
</tbody>
</table>

Coherent emission of identical emitters in parallel

⇒ **scalability of the power & the brightness**
Purpose: passive coherent combining of diode lasers to induce an efficient coupling between emitters

External cavity designs

- Talbot self-imaging effect
 Near-field diffraction phenomenon

- Angular filtering
 Far-field filtering

HR coating

Diode laser array

Spectral/spatial filter

Output coupler

Coherent high power laser beam
External cavity designs

Purpose: passive coherent combining of diode lasers
⇒ to induce an efficient coupling between emitters
+ wavelength stabilization
⇒ volume Bragg gratings: Angular + spectral selectivity
Numerical modelling of external cavities

- N single-mode emitters
- Coupling matrix

\[
\kappa_{mn} = \frac{\int_{-\infty}^{+\infty} e_m^*(x) \times C[e_n](x) dx}{\int_{-\infty}^{+\infty} e_m^*(x) \times e_m(x) dx}
\]

\[
C[e_n] : \text{operator describing beam propagation + filtering}
\]

- \(r_0 r e^{2i\varphi} e^{2gL}\left\{\kappa_{mn}\right\} \times \vec{E} = \vec{E} \)

\(\Rightarrow \) N eigenmodes = N array supermodes

Near-field + far-field profiles
Outline

• Introduction
 – External cavity modelling

• Talbot external cavity
 – Principles
 – Numerical modelling
 – Experimental results

• Angular filtering external cavity
 – Numerical modelling
 – Experimental results

• Conclusion
Talbot effect = Near field diffraction self-imaging of periodical objects resulting from multiple beam interferences

- Self-images (amplitude & phase) at:
 - multiple of the Talbot distance $Z_T = 2p^2/\lambda$
 - fraction of Z_T: $p/2$ lateral shift of the in-phase mode at $Z_T/2$

- Edge losses due to finite size of the array

Talbot external cavity set-up
propagation of 10 in-phase Gaussian-shaped emitters
Talbot cavity: modal selectivity

$2w \Rightarrow \alpha = \lambda/2p$

$\alpha_0 = \lambda/2p$

$L_{\text{ext}} = Z_T/4$

$\mathbf{C}[\mathbf{e}_n]$: free-space propagation on $2L_{\text{ext}}$ distance, with angled reflection

$\Rightarrow \alpha = \lambda/2p$: in-phase mode selection

Computation of the coupling efficiency of each array transverse supermode

$N = 10$, $p = 100 \mu m$, $w = 15 \mu m$, $\lambda = 976 nm$

- in-phase mode
 - (All emitters at the same phase)
 - $0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0$

- out-of-phase mode
 - (Adjacent emitters with π dephasing)
 - $0 - \pi - 0 - \pi - 0 - \pi - 0 - \pi - 0$
Talbot cavity: in-phase mode

\[\alpha_0 = \frac{\lambda}{2p} \]

\[L_{\text{ext}} = \frac{Z_T}{4} \]

\[C[e_n] : \text{free-space propagation on } 2L_{\text{ext}} \text{ distance, with angled reflection} \]

\[\Rightarrow \alpha = \frac{\lambda}{2p} : \text{in-phase mode selection} \]

\[N = 10, p = 100 \, \mu m, w = 15 \, \mu m, \lambda = 976 \, nm \]
External Talbot cavity Set-Up

10 emitters

\[p = 100 \, \mu m \]

\[\lambda_B = 975.4 \, \text{nm} \]
\[R_B \approx 40 \% \]
\[\Delta \theta = 2^\circ \text{ (FWHM)} \]
\[\Delta \lambda = 0.3 \, \text{nm} \]

\[\alpha = \lambda / 2p \]

\[L_{\text{ext}} = Z_T / 4 = 5 \, \text{mm} \]

Index-guided tapered emitter

Single mode operation (\(M^2 < 2\))
High power (1 W)

- Far-field profile:
 - central peak width = 1.2 mrad (FWHM) \(\cong \frac{\lambda}{Np} \)
 - envelope width = 40 mrad (FWHM)
- High coherence evaluated from the fringe visibility: \(V=0.80 \)

\[
Visibility \quad V = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}
\]
- Spectral locking of each laser diodes
- Narrow linewidth ($\Delta \lambda < 0.1$ nm)

- Laser threshold $I_{\text{th}} = 0.9$ A
- $P_{\text{max}} = 1.7$ W @ 4 A (4 x I_{th})
Outline

• Introduction
 – External cavity modelling

• Talbot external cavity
 – Principles
 – Numerical modelling
 – Experimental results

• Angular filtering external cavity
 – Numerical modelling
 – Experimental results

• Conclusion
Angular filtering extended-cavity

Angular selective feedback:
Selection of the array supermode of highest overlap with the angular filter in the far field

⇒ Numerical modelling:
\[C[e_n] : \text{filtering of angular components in the far-field profile} \]

Angular filtering extended-cavity

⇒ Application to high filling-ratio array:

6 adjacent index-guided tapered lasers
Pitch $p = 30 \, \mu m \Rightarrow$ Filling ratio $\approx 100\%$
No coupling between adjacent emitters
⇒ Reduced number of peaks in the coherent far-field profiles

$L = 2.5 \, mm \quad L = 0.2 \, mm$

Out-of-phase mode

\[
\begin{align*}
\theta_0 &= \frac{\lambda}{2p} \\
\Delta \theta &= \frac{\lambda}{Np}
\end{align*}
\]

In-phase mode

\[
\begin{align*}
\theta_0 &= 0^\circ \\
\Delta \theta &= \frac{\lambda}{Np}
\end{align*}
\]
Angular filtering extended-cavity

⇒ Application to high filling-ratio array:

6 adjacent **index-guided tapered** lasers
Pitch $p = 30 \, \mu m \Rightarrow$ Filling ratio $\approx 100\%$
No coupling between adjacent emitters
⇒ Reduced number of peaks in the coherent far-field profiles

$L = 2.5 \, mm \quad L = 0.2 \, mm$

Out-of-phase mode

Feedback direction $\approx \lambda/2p$ ($= 16 \, mrad$)

corresponds to one of the lobe in the out-of-phase array supermode

Output beam on the symmetric lobe
Angular filtering with volume Bragg Grating

Reflection Bragg grating (RBG):
- $R \geq 99\%$ at 979 nm
- $\delta \lambda = 0.3$ nm
- $\Delta \theta_{1/2} = 35$ mrad = 2°

Output power ≤ 0.7 W
Wavelength locked to 979 nm, $\Delta \lambda < 0.1$ nm

With external cavity:
- 50% output power

Feedback angle
- $\Delta \theta_{1/2}$

Spectrum ($I = 3$ A)
- $\Delta \lambda < 0.1$ nm
Summary

- Numerical model to predict the modal properties of the extended-cavity diode laser bars

- Narrow spectrum $\rightarrow \Delta \lambda < 0.1$ nm thanks to Bragg gratings

Talbot cavity vs Intracavity angular filtering:

- In-phase mode selection with a high coherence
- $P_{\text{max}} = 1.7$ W @ 4 A (4x threshold)
- Scalable to high output powers

- Out-of-phase mode operation
- Quasi diffraction limited beam ($M^2 < 2$)
- Output power limited by AR coating

well-adapted to high filling factor arrays (reduced number of peaks in the far-field)
- Increase of the output power with high-power tapered laser bars
- Conversion of the in-phase supermode far-field profile in a Gaussian profile with phase diffraction gratings: ~80% conversion efficiency expected.

Talbot cavity