Single-frequency diode-pumped semiconductor laser tuned on a Cs transition
Benjamin Cocquelin, Gaëlle Lucas-Leclin, Patrick Georges, Isabelle Sagnes, Arnaud Garnache, David Holleville

To cite this version:
Benjamin Cocquelin, Gaëlle Lucas-Leclin, Patrick Georges, Isabelle Sagnes, Arnaud Garnache, et al.. Single-frequency diode-pumped semiconductor laser tuned on a Cs transition. 2010. hal-00534735

HAL Id: hal-00534735
https://hal-ioqs.archives-ouvertes.fr/hal-00534735
Preprint submitted on 10 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Single-frequency diode-pumped semiconductor laser tuned on a Cs transition

B. Cocquelin, Gaëlle Lucas-Leclin and P. Georges
Laboratoire Charles Fabry de l’Institut d’Optique, Palaiseau, France
I. Sagnes
Laboratoire de Photonique et de Nanostructures, Marcoussis, France
A. Garnache
Institut d’Électronique du Sud, Montpellier, France
D. Holleville
LNE/SYRTE - Observatoire de Paris, Paris, France

Acknowledgements: B. Cocquelin PhD funding by CNRS/CNES
Financial support from the DGA under contract « POSEIDA » n°0534004
Lasers in Cesium atomic clocks

Need for high-power and narrow-linewidth sources emitting at the Cesium D$_2$ line (852 nm)
⇒ a single OP-VECSEL?
The document discusses a single-frequency diode-pumped semiconductor laser at the Cs line. The laser emits at 850 nm, with a Bragg mirror and an external mirror. Key features include:

- **High power** in Optically Pumped-VECSEL:
 - 30 W @ 980 nm, $M^2 = 3$ (Coherent - Photonics West '04)
 - 1.0 W in-well pump / 0.7 W @ 850 nm, $M^2 = 5$ (University of Strathclyde)

- **No spatial hole-burning**: single-frequency in simple linear cavity
 - 500 mW @ 1003 nm (Jacquemet et al, App.Phys. B 86, 503 (2007))
 - 42 mW @ 870 nm, $\Delta \nu_L \approx 3$ kHz (Holm et al, IEEE PTL 11, 1551 (1999))

- Linearly polarized, circular TEM$_{00}$ beam
Design of the semiconductor structure

- $\lambda_L = 852$ nm
- Barriers absorption at $\lambda_P \leq 720$ nm

 $$e_b = 2 \, \mu m \Rightarrow \eta_P = 85\%$$

- AR coating (Si_3N_4) at air/SC surface for:

 maximum pump transmission

 + reduction of microcavity etalon effect

- Structure grown by MOCVD

Active Layers

- $29\lambda/4$

Stop band

- 70 nm

Reflectivity

- $R_{\text{max}} = 99.97\%$

Photoluminescence

Single-frequency diode-pumped semiconductor laser at the Cs line
Design optimization

\[I_{th} = N_{QW} I_{tr} \right exp \left(\frac{T}{2 \Gamma N_{QW} L_{QW} g_0} \right) \]

- Low threshold pump intensity \(I_{th} \) for high opt-opt efficiency
 \[\Rightarrow N_{QW} = 7 \text{ is optimal for } \sim 2\% \text{ losses} \]
Single-frequency setup

- Compact plane-concave cavity: \(L_{\text{ext}} \approx 10 \text{ mm} \)
- Single-transverse mode pump laser diode:
 \[P_{\text{max}} = 120 \text{ mW (245 mA) at } \lambda_p = 658 \text{ nm} \]
- 52 x 52 x 58 mm\(^3\) integrated setup for improved mechanical stability
Single-frequency diode-pumped semiconductor laser at the Cs line

- Low threshold: 4.1 kW/cm²
- Good beam quality: $M^2 < 1.2$ and linear polarization

$P_L = 17 \text{ mW}$ (pump limited)

$\eta = 17\%$

$I_{th} \approx 4.1 \text{ kW/cm}^2$
Single-frequency emission

- Single frequency operation without intracavity λ-selective element: checked with a high Finesse ($F = 130$) 37.5-GHz-FSR scanning Fabry-Perot SMSR > 25 dB

Single-mode spectrum in $t_{SM} = T_C \left(\frac{\Gamma}{FSR} \right)^2 \approx 1 \text{ ms}$ for $L_{ext} = 10 \text{ mm}$

$\begin{aligned}
T_C &= \text{photon lifetime (\sim 10 ns)} \\
\Gamma &= \text{gain bandwidth (\sim 10 nm)}
\end{aligned}$

With an intracavity etalon

25-µm thick (≈ 9 nm FSR) silica etalon
⇒ λ independent of operating conditions (T°, P_p)
+ improved long-term stability

- Increased losses at θ ≠ 0° ⇒ ↓ laser power: P_L = 7 mW @ 852.14 nm
Single-frequency tunability

- more than 15 GHz continuous tunability (without mode-hops) by translating the external cavity mirror with PZT

Frequency-shift measurement with a low-finesse static 1.5-GHz-FSR Fabry-Perot

⇒ Tuning over the Cs-absorption spectrum (9 GHz)
Single-frequency diode-pumped semiconductor laser at the Cs line

Beat-note set-up

Stabilization of the laser frequency
- at side of a Doppler-free Cesium line (5 MHz FWHM)
- on PZT voltage - 2-stage integration electronics
- low-frequency servo loop (F < 2 kHz)

Extended-cavity laser diode
$\Delta \nu = 130$ kHz

Linewidth measurement

- FWHM linewidth ≈ 500 kHz: low-frequency noise contribution
- Lorentzian linewidth ≈ 70 kHz related to white noise floor

Extended-cavity laser diode

- $\Delta \nu_{1/2} = 130$ kHz
- $\Delta \nu_L = 15$ kHz

Cs cell

Fast photodiode

RF analyzer

- $\Delta \nu \sim 500$ kHz (-3dB)
- Lorentzian shape $\Delta \nu \sim 70$ kHz

OP-VECSEL

PD

Linewidth measurement

- RBW = 10 kHz
- SW, T = 10 ms
- AVE = 10
Towards higher power...

- 330 mW at $P_p = 1.1$ W
 - $\lambda = 855$ nm ($\Delta \lambda \approx 1$ nm)
 - 450 mW under QCW pumping

- Single transverse mode

- 120 mW single-frequency

⇒ Thermal-limited output power
⇒ **High output power** on a GaAs substrate
⇒ Low threshold & high opt-opt efficiency

$T = 1.1\%$

Silica etalon

$W_p = 40\ \mu m$

External Mirror
- HR @ 852 nm
- $R = -100$ mm

Laser Diode Pump
- 5 W @ 690 nm
- $\varnothing = 100\ \mu m$

$T = 273$ K

$\eta_{ext} = 36\%$

$I_{th} \approx 3.2$ kW/cm2
Conclusion

– Design & fabrication of a AlGaAs/GaAs structure at $\lambda = 852$ nm optimized for low power/high efficiency operation

 7 QWs
 low threshold $I_{th} \leq 4$ kW/cm2

– Single-frequency operation in a simple linear cavity

 without λ-selective element : 17 mW
 with a 25-µm thick etalon : 7 mW

– Validation on a Cs atomic line

 >15 GHz continuous tunability
 frequency lock-in on an absolute reference (atomic line)
 comparison with an independent laser source : $\Delta \nu_L = 500$ kHz (-3dB / 10 ms sweep time)

– Increase of the single-frequency power under high power pumping

 120 mW without specific thermal management
 ($GaAs$ substrate, no intracavity heatspreader)

⇒ evaluation of the spectral properties
+ thermal management for power scaling

Specifications already adequate for optical detection in atomic clocks

Europhotons '08