Single-frequency diode-pumped semiconductor laser tuned on a Cs transition

Benjamin Cocquelin, Gaëlle Lucas-Leclin, Patrick Georges, Isabelle Sagnes, Arnaud Garnache, David Holleville

To cite this version:
Benjamin Cocquelin, Gaëlle Lucas-Leclin, Patrick Georges, Isabelle Sagnes, Arnaud Garnache, et al.. Single-frequency diode-pumped semiconductor laser tuned on a Cs transition. 2010. hal-00534735

HAL Id: hal-00534735
https://hal-iogs.archives-ouvertes.fr/hal-00534735
Preprint submitted on 10 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Single-frequency diode-pumped semiconductor laser tuned on a Cs transition

B. Cocquelin, Gaëlle Lucas-Leclin and P. Georges
Laboratoire Charles Fabry de l’Institut d’Optique,
Palaiseau, France

I. Sagnes
Laboratoire de Photonique et de Nanostructures,
Marcoussis, France

A. Garnache
Institut d’Électronique du Sud,
Montpellier, France

D. Holleville
LNE/SYRTE - Observatoire de Paris,
Paris, France

Acknowledgements: B. Cocquelin PhD funding by CNRS/CNES
Financial support from the DGA under contract « POSEIDA » n°0534004
Lasers in Cesium atomic clocks

Need for **high-power** and **narrow-linewidth** sources emitting at the Cesium D$_2$ line (852 nm)

⇒ a single OP-VECSEL?
OP-VECSEL at 850 nm

- **High power** in Optically Pumped-VECSEL
 - 30 W @ 980 nm, $M^2 = 3$ (Coherent - Photonics West '04)
 - 1.0 W in-well pump / 0.7 W @ 850 nm, $M^2 = 5$ (University of Strathclyde)

- **No spatial hole-burning**: **single-frequency** in simple linear cavity
 - 42 mW @ 870 nm, $\Delta \nu_L \approx 3$ kHz (Holm et al, *IEEE PTL* 11, 1551 (1999))

- Linearly polarized, circular TEM$_{00}$ beam
Design of the semiconductor structure

- $\lambda_L = 852$ nm
- Barriers absorption at $\lambda_P \leq 720$ nm
 - $e_b = 2 \mu m \Rightarrow \eta_P = 85\%$

- AR coating (Si$_3$N$_4$) at air/SC surface for:
 - maximum pump transmission
 - reduction of microcavity etalon effect

- Structure grown by MOCVD

$\eta = 85\%$

Active Layers
29$\lambda/4$

$|E|^2$

Bragg Mirror

32.5 pairs $\lambda/4$
Al$_{0.22}$Ga$_{0.78}$As/AlAs
R $\geq 99.95\%$

GaAs
350 μm

Substrate

GaAs

32.5 pairs $\lambda/4$
Al$_{0.22}$Ga$_{0.78}$As/AlAs
R $\geq 99.95\%$

$|E|^2$

Barriers

Al$_{0.22}$Ga$_{0.78}$As

Quantum wells

GaAs

$N_{QW} = 7$; $L_{QW} = 8$ nm

InGaP
Caping Layer
(20 nm)

Reflectivity
$R_{max} = 99.97\%$

Stop band
70 nm

Photoluminescence

Energy
Design optimization

• Low threshold pump intensity I_{th} for high opt-opt efficiency
 $\Rightarrow N_{QW} = 7$ is optimal for $\sim 2\%$ losses

Experimental parameters

<table>
<thead>
<tr>
<th>$T(°C)$</th>
<th>10°C</th>
<th>40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_0(cm⁻¹)</td>
<td>1000</td>
<td>830</td>
</tr>
<tr>
<td>I_{tr} (W/cm²)</td>
<td>105</td>
<td>190</td>
</tr>
</tbody>
</table>

Threshold intensity

$$I_{th} = N_{QW} I_{tr} \times \exp \left(\frac{T}{2 \Gamma N_{QW} L_{QW} g_0} \right)$$
Single-frequency setup

- Compact plane-concave cavity: $L_{\text{ext}} = 10 \text{ mm}$
- Single-transverse mode pump laser diode:
 \[P_{\text{max}} = 120 \text{ mW} \text{ at } \lambda_p = 658 \text{ nm} \]
- $52 \times 52 \times 58 \text{ mm}^3$ integrated setup for improved mechanical stability
Single-frequency emission

- Low threshold: 4.1 kW/cm²
- Good beam quality: $M^2 < 1.2$ and linear polarization

\[P_L = 17 \text{ mW} \quad \text{(pump limited)} \]

\[I_{th} \approx 4.1 \text{ kW/cm}^2 \]

\[\eta = 17\% \]
Single-frequency emission

- Single frequency operation **without intracavity \(\lambda \)-selective element**: checked with a high Finesse \((F = 130)\) 37.5-GHz-FSR scanning Fabry-Perot SMSR > 25 dB

Single-mode spectrum in \(t_{SM} \approx T_C \left(\frac{\Gamma}{FSR} \right)^2 \approx 1\text{ms} \) for \(L_{ext} = 10\text{ mm} \)

\(T_C = \text{photon lifetime (~10 ns)} \)
\(\Gamma = \text{gain bandwidth (~10 nm)} \)

With an intracavity etalon

25-μm thick (≃ 9 nm FSR) silica etalon
⇒ λ independent of operating conditions (T°, P_P)
+ improved long-term stability

- Increased losses at θ ≠ 0° ⇒ ↓ laser power: P_L = 7 mW @ 852.14 nm
Single-frequency tunability

- more than 15 GHz continuous tunability (without mode-hops) by translating the external cavity mirror with PZT

Frequency-shift measurement with a low-finesse static 1.5-GHz-FSR Fabry-Perot

⇒ Tuning over the Cs-absorption spectrum (9 GHz)
Beat-note set-up

Stabilization of the laser frequency
- at side of a Doppler-free Cesium line (5 MHz FWHM)
- on PZT voltage - 2-stage integration electronics
- low-frequency servo loop (F < 2 kHz)

![Graph showing beat-note set-up and stability measurements](chart.png)
Linewidth measurement

• FWHM linewidth ≈ 500 kHz: low-frequency noise contribution
• Lorentzian linewidth ≈ 70 kHz related to white noise floor

Extended-cavity laser diode
\[\Delta v_{1/2} = 130 \text{ kHz} \]
\[\Delta v_L = 15 \text{ kHz} \]

\[\Delta v \sim 500 \text{ kHz } (-3\text{dB}) \]

Lorentzian shape
\[\Delta v \sim 70 \text{ kHz} \]
Towards higher power...

• 330 mW at $P_P = 1.1$ W
 $\lambda = 855$ nm ($\Delta\lambda \approx 1$ nm)
• 450 mW under QCW pumping
• Single transverse mode
• 120 mW single-frequency

⇒ Thermal-limited output power
⇒ High output power on a GaAs substrate
⇒ Low threshold & high opt-opt efficiency
Conclusion

– Design & fabrication of a AlGaAs/GaAs structure at $\lambda = 852$ nm optimized for low power/high efficiency operation

 7 QWs
 low threshold $I_{th} \leq 4$ kW/cm2

– Single-frequency operation in a simple linear cavity

 without λ-selective element : 17 mW
 with a 25-µm thick etalon : 7 mW

– Validation on a Cs atomic line

 > 15 GHz continuous tunability
 frequency lock-in on an absolute reference (atomic line)
 comparison with an independent laser source : $\Delta \nu_L = 500$ kHz (-3dB / 10 ms sweep time)

– Increase of the single-frequency power under high power pumping

 120 mW without specific thermal management
 (GaAs substrate, no intracavity heatspreader)

⇒ evaluation of the spectral properties
+ thermal management for power scaling

Specifications already adequate for optical detection in atomic clocks