Skip to Main content Skip to Navigation
Journal articles

Subsurface Carbon‐Induced Local Charge of Copper for On‐Surface Displacement Reaction

Abstract : Transition metal carbides have sparked unprecedented enthusiasm as high-performance catalysts in recent years. Still, the catalytic properties of copper (Cu) carbide remain unexplored. By introducing subsurface carbon (C) to Cu(111), displacement reaction of proton in carboxyl acid group with single Cu atom is demonstrated at the atomic scale and room temperature. Its occurrence is attributed to the C-doping induced local charge of surface Cu atoms (up to +0.30 e/atom), which accelerates the rate of on-surface deprotonation via reduction of the corresponding energy barrier, thus enabling the instant displacement of a proton with a Cu atom when the molecules land on the surface. Such well-defined and robust Cu + surface based on the subsurface C doping offers a novel catalytic platform for on-surface synthesis.
Complete list of metadata
Contributor : André Gourdon Connect in order to contact the contributor
Submitted on : Monday, September 13, 2021 - 3:17:41 PM
Last modification on : Monday, July 4, 2022 - 8:41:50 AM


Subsurface Carbon-Induced Loca...
Files produced by the author(s)



Shaoshan Wang, Pengcheng Ding, Zhuo Li, Cristina Mattioli, Wenlong E, et al.. Subsurface Carbon‐Induced Local Charge of Copper for On‐Surface Displacement Reaction. Angewandte Chemie International Edition, Wiley-VCH Verlag, 2021, ⟨10.1002/anie.202108712⟩. ⟨hal-03342691⟩



Record views


Files downloads