Stochastic recurrent equations : structure, statistical inference, and financial applications - ENSAE Paris Access content directly
Theses Year : 2023

Stochastic recurrent equations : structure, statistical inference, and financial applications

Equations récurrentes stochastiques : structure, inférence statistique et applications financières

Baye Matar Kandji
  • Function : Author
  • PersonId : 1267196
  • IdRef : 270826211

Abstract

We are interested in the theoretical properties of Stochastic Recurrent Equations (SRE) and their applications in finance. These models are widely used in econometrics, including financial econometrics, to explain the dynamics of various processes such as the volatility of financial returns. However, the probability structure and statistical properties of these models are still not well understood, especially when the model is considered in infinite dimensions or driven by non-independent processes. These two features lead to significant difficulties in the theoretical study of these models. In this context, we aim to explore the existence of stationary solutions and the statistical and probabilistic properties of these solutions.We establish new properties on the trajectory of the stationary solution of SREs, which we use to study the asymptotic properties of the quasi-maximum likelihood estimator (QMLE) of GARCH-type (generalized autoregressive conditional heteroskedasticity) conditional volatility models. In particular, we study the stationarity and statistical inference of semi-strong GARCH(p,q) models where the innovation process is not necessarily independent. We establish the consistency of the QMLE of semi-strong GARCHs without assuming the commonly used condition that the stationary distribution admits a small-order moment. In addition, we are interested in the two-factor volatility GARCH models (GARCH-MIDAS); a long-run, and a short-run volatility. These models were recently introduced by Engle et al. (2013) and have the particularity to admit stationary solutions with heavy-tailed distributions. These models are now widely used but their statistical properties have not received much attention. We show the consistency and asymptotic normality of the QMLE of the GARCH-MIDAS models and provide various test procedures to evaluate the presence of long-run volatility in these models. We also illustrate our results with simulations and applications to real financial data.Finally, we extend a result of Kesten (1975) on the growth rate of additive sequences to superadditive processes. From this result, we derive generalizations of the contraction property of random matrices to products of stochastic operators. We use these results to establish necessary and sufficient conditions for the existence of stationary solutions of the affine case with positive coefficients of SREs in the space of continuous functions. This class of models includes most conditional volatility models, including functional GARCHs.
Nous nous intéressons à l'étude des propriétés théoriques des équations récurrentes stochastiques (SRE) et de leurs applications en finance. Ces modèles sont couramment utilisés en économétrie, y compris en économétrie de la finance, pour styliser la dynamique d'une variété de processus tels que la volatilité des rendements financiers. Cependant, la structure de probabilité ainsi que les propriétés statistiques de ces modèles sont encore mal connues, particulièrement lorsque le modèle est considéré en dimension infinie ou lorsqu'il est généré par un processus non indépendant. Ces deux caractéristiques entraînent de formidables difficultés à l'étude théorique de ces modèles. Dans ces contextes, nous nous intéressons à l'existence de solutions stationnaires, ainsi qu'aux propriétés statistiques et probabilistes de ces solutions.Nous établissons de nouvelles propriétés sur la trajectoire de la solution stationnaire des SREs que nous exploitons dans l'étude des propriétés asymptotiques de l'estimateur du quasi-maximum de vraisemblance (QMLE) des modèles de volatilité conditionnelle de type GARCH. En particulier, nous avons étudié la stationnarité et l'inférence statistique des modèles GARCH(p,q) semi-forts dans lesquels le processus d'innovation n'est pas nécessairement indépendant. Nous établissons la consistance du QMLE des GARCH (p,q) semi-forts sans hypothèses d'existence de moment, couramment supposée pour ces modèles, sur la distribution stationnaire. De même, nous nous sommes intéressés aux modèles GARCH à deux facteurs (GARCH-MIDAS); un facteur de volatilité à long terme et un autre à court terme. Ces récents modèles introduits par Engle et al. (2013) ont la particularité d'avoir des solutions stationnaires avec des distributions à queue épaisse. Ces modèles sont maintenant fréquemment utilisés en économétrie, cependant, leurs propriétés statistiques n'ont pas reçu beaucoup d'attention jusqu'à présent. Nous montrons la consistance et la normalité asymptotique du QMLE des modèles GARCH-MIDAS et nous proposons différentes procédures de test pour évaluer la présence de volatilité à long terme dans ces modèles. Nous illustrons nos résultats avec des simulations et des applications sur des données financières réelles.Enfin, nous étendons le résultat de Kesten (1975) sur le taux de croissance des séquences additives aux processus superadditifs. Nous déduisons de ce résultat des généralisations de la propriété de contraction des matrices aléatoires aux produits d'opérateurs stochastiques. Nous utilisons ces résultats pour établir des conditions nécessaires et suffisantes d'existence de solutions stationnaires du modèle affine à coefficients positifs des SREs dans l'espace des fonctions continues. Cette classe de modèles regroupe la plupart des modèles de volatilité conditionnelle, y compris les GARCH fonctionnels.
Fichier principal
Vignette du fichier
124675_KANDJI_2023_diffusion.pdf (3.17 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)

Dates and versions

tel-04149397 , version 1 (22-09-2023)

Identifiers

  • HAL Id : tel-04149397 , version 1

Cite

Baye Matar Kandji. Stochastic recurrent equations : structure, statistical inference, and financial applications. Probability [math.PR]. Institut Polytechnique de Paris, 2023. English. ⟨NNT : 2023IPPAG004⟩. ⟨tel-04149397⟩
68 View
28 Download

Share

Gmail Facebook X LinkedIn More