Trefftz discontinuous Galerkin method for Friedrichs systems with linear relaxation: application to the P 1 model

Abstract : This work deals with the first Trefftz Discontinuous Galerkin (TDG) scheme for a model problem of transport with relaxation. The model problem is written as a PN or SN model, and we study in more details the P1 model in dimension 1 and 2. We show that TDG method provides natural well-balanced (WB) and asymptotic preserving (AP) discretization since exact solutions are used locally in the basis functions. High order convergence with respect to the mesh size in two dimensions is proved together with the asymptotic property for P1 model in dimension one. Numerical results in dimension 1 and 2 illustrate the theoretical properties.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.sorbonne-universite.fr/hal-01625659
Contributeur : Bruno Després <>
Soumis le : vendredi 15 décembre 2017 - 13:53:21
Dernière modification le : mercredi 21 mars 2018 - 18:56:47

Fichier

TDG_24_revised.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01625659, version 2

Collections

Citation

Guillaume Morel, Christophe Buet, Bruno Després. Trefftz discontinuous Galerkin method for Friedrichs systems with linear relaxation: application to the P 1 model. 2017. 〈hal-01625659v2〉

Partager

Métriques

Consultations de la notice

199

Téléchargements de fichiers

52