Quasi-diffraction limited emission from an array of tapered laser diodes in volume Bragg grating external cavities

David Paboeuf, Gaëlle Lucas-Leclin, Nicolas Michel, Michel Calligaro, Michel Krakowski, Patrick Georges

1. Laboratoire Charles Fabry de l’Institut d’Optique, CNRS, Univ Paris-Sud, Campus Polytechnique, RD128, 91127 Palaiseau Cedex, France
2. Alcatel-Thales III-V Lab, RD128, 91767 Palaiseau – France

High-brightness single laser diodes based on the widespread taper design have demonstrated output powers of a few Watts with a single transverse mode operation [1]. The use of arrays of such lasers result in a further increase of the laser power, but with the drawback of a loss in the spatial brightness. To overcome this limitation numerous external-cavity configurations have been proposed which induce a coherence between the individual emitters of the array and result in a brightness improvement [2]. In this work we describe two external cavities intended to improve the spatial brightness of a bar of N = 6 index-guided tapered laser diodes emitting around 975 nm. The lateral structure of the emitters consists of a short ridge single-mode section, a 2.3 mm-long narrow-angle tapered ridge and a common amplified free-space 0.2 mm-long section. The array pitch is p = 30 µm, and the near-field 1/© full-width (1/©-FW) of each emitter is 30 µm too, so the filling factor of this array is 100% on the front facet and the emission section is w = 180 µm wide. No adjacent coupling between emitters is evidenced in the free running laser emission of the array alone, and its 1/©-FW divergence is ~80 mrad in the slow axis. Our external cavity designs aim at controlling the slow-axis beam divergence of the whole array by inducing an angular-filtered feedback into the lasers [3,4]. The configuration forces the array to operate in the out-of-phase mode, which has two main lobes in its far-field profile at ± λ/2p = ± 16 mrad. We take benefit of the angular selectivity of volume Bragg gratings to favour an asymmetrical feedback on one of these peaks. The far-field of the extended-cavity array is thus expected to exhibit one diffraction-limited peak in the symmetric direction (Figure 1). Two different setups have been investigated experimentally:

In the design T (Figure 1), a transmission Bragg grating with a diffraction efficiency of 90% and a full-width at half-maximum (FWHM) angular selectivity of 9 mrad is inserted in the external cavity. A high reflection dielectric mirror reflects the diffracted beam back into the emitters. We observed a narrow 6 mrad-FWHM peak in the slow-axis far-field profile, which contains 30% of the output power. The peak width is close to the diffraction limit λ/© = 5 mrad, and its M² parameter is < 2. The maximum output power reaches 1.3 W at 3A.

In the design R (Figure 1) a reflection Bragg grating with a reflectivity R ≥ 99% at λ0 = 979 nm and a spectral bandwidth Δλ ≡ 0.3 nm reflects the output beam at the angle of +λ/2p. The angular selectivity of the gratings is about Δθ0 = 35 mrad. A narrow peak appears in the far-field at -λ/2p which contains up to 50% of the total output power (Figure 2), with a M² parameter < 2. Furthermore the laser spectrum is locked to the Bragg wavelength λ0 resulting in a <0.1 nm-wide stabilized line. The total output power reaches 700 mW at 3 A.

These two configurations both result in quasi-diffraction limited far-field profiles and similar output powers in the main lobe; nevertheless the setup R allows concurrent spectrum stabilization.

![Fig. 1 Experimental external cavity setups; FAC = fast-axis collimation lens, TBG = transmission Bragg grating, RBG = reflection Bragg grating.](image1)

![Fig. 2 Far-field profile of the free-running array (black) and of the external-cavity array in the R setup (red) at I = 2.4 A.](image2)

Acknowledgments
The authors thank the European Community for financial support under the www.BRIGHTER.eu program (IP 035266). D. Paboeuf acknowledges the funding of his PhD by the French Délégation Générale de l’Armement.

References